Eigenfunction of the Laplace operator in +1-dimentional simplex
Pages 68-73
In order to find eigenfunction of the Laplace operator in regular
n+1-dimensional simplex the barycentric coordinates are used. For obtaining this result we need some formulas of the analytical geometry. A similar result was obtained in the earlier papers of the author in a tetrahedron from
R
3 and in gipertetrahedron from
R
4. Let П be unlimited cylinder in the space
R
n, its cross-section with hyperplane has a special form. Let
L be a second order linear differential operator in divergence form, which is uniformly elliptic and η is its ellipticity constant. Let
u be a solution of the mixed boundary value problem in Π with homogeneous Dirichlet and Neumann data on the boundary of the cylinder. In some cases the eigenfunction of the Laplace operator allows us to continue this solution from the cylinder Π to the whole space
R
n with the same ellipticity constant. The obtained result allows us to get a number of various theorems on the solution growth for mixed boundary value problem for linear differential uniformly elliptical equation of the second order, given in unlimited cylinder with special cross-section. In addition we consider
n-1-dimensional hill tetrahedron and the eigenfunction for an elliptic operator with constant coefficients in it.
DOI: 10.22227/1997-0935.2014.11.68-73
- Sitnikova E.G. Sobstvennaya funktsiya operatora Laplasa v gipertetraedre [Eigenfunction of the Laplace Operator in the Tetrahedron]. Integratsiya, partnerstvo i innovatsii v stroitel’noy nauke i obrazovanii : sbornik trudov Mezhdunaridnoy nauchnoy konferentsii [Integration, Partnership and Innovations in Construction Science and Education : Collection of Works of International Scientific Conference]. Moscow, MGSU, 2011, pp. 755—758. (In Russian).
- Sitnikova E.G. Neskol’ko teorem tipa Fragmena-Lindelefa dlya ellipticheskogo uravneniya vtorogo poryadka [Several Theorems of Phragmen-Lindelof Type for the Second Order Differential Equation]. Voprosy matematiki i mekhaniki sploshnykh sred : sbornik nauchnykh trudov [Problems of Continuum Mathematics and Mechanics: Collection of Works]. Moscow, MGSU Publ., 1984, pp. 98—104. (In Russian).
- Sitnikova E.G. Sobstvennaya funktsiya operatora Laplasa v tetraedre [Eigenfunction of the Laplace Operator in the Tetrahedron]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 80—82. (In Russian).
- Mikhaylov V.P. Differentsial’nye uravneniya v chastnykh proizvodnykh [Differential Equations in Partial Derivatives]. Moscow, Nauka Publ., 1976, 391 p. (In Russian).
- Mikhlin S.G. Kurs matematicheskoy fiziki [Course in Mathematical Physics]. Moscow, Nauka Publ., 1968, 576 p. (In Russian).
- Lazutkin V.F. Ob asimptotike sobstvennykh funktsiy operatora Laplasa [On Asymptotics of Eigenfunctions of the Laplace Operator]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR]. 1971, vol. 200, no. 6, pp. 1277—1279. (In Russian).
- Lazutkin V.F. Sobstvennye funktsii s zadannoy kaustikoy [Eigenfunctions with Preassigned Caustic Curve]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Computational Mathematics and Mathematical Physics]. 1970, vol. 10, no. 2, pp. 352—373. (In Russian).
- Lazutkin V.F. Asimptotika serii sobstvennykh funktsiy operatora Laplasa, otvechayushchey zamknutoy invariantnoy krivoy «billiardnoy zadachi» [Asymptotics of Eigenfunctions Series of the Laplace Operator Matching Closed Invariant Curve of a "Billiard problem"]. Problemy matematicheskoy fiziki [Mathematical Physics Problems]. 1971, no. 5, pp. 72—91. (In Russian).
- Lazutkin V.F. Postroenie asimptotiki serii sobstvennykh funktsiy operatora Laplasa, otvechayushchey ellipticheskoy periodicheskoy traektorii «billiardnoy zadachi» [Asymptotics Creation of Eigenfunctions Series of the Laplace Operator Matching Elliptical Periodic Path of a "Billiard problem"]. Problemy matematicheskoy fiziki [Mathematical Physics Problems]. 1973, no. 6, pp. 90—100. (In Russian).
- Apostolova L.N. Initial Value Problem for the Double-Complex Laplace Operator. Eigenvalue Approaches. AIP Conf. Proc. 2011, vol. 1340, no. 1, pp. 15—22. DOI: http://dx.doi.org/10.1063/1.3567120.
- Pomeranz K.B. Two Theorems Concerning the Laplace Operator. AIP Am. J. Phys. 1963, vol. 31, no. 8, pp. 622—623. DOI: http://dx.doi.org/10.1119/1.1969694.
- Iorgov N.Z., Klimyk A.U. A Laplace Operator and Harmonics on the Quantum Complex Vector Space. AIP J. Math. Phys. 2003, vol. 44, no. 2, pp. 823—848.
- Fern?ndez C. Spectral concentration for the Laplace operator in the exterior of a resonator. AIP J. Math. Phys. 1985, vol. 26, no. 3, pp. 383—384. DOI: http://dx.doi.org/10.1063/1.526618.
- Davis H.F. The Laplace Operator. AIP Am. J. Phys. 1964, 32, 318. DOI: http://dx.doi.org/10.1119/1.1970275. Date of access: 25.03.2012.
- Gorbar E.V. Heat Kernel Expansion for Operators Containing a Root of the Laplace Operator. AIP J. Math. Phys. 1997, vol. 38, no. 3, pp. 1692. DOI: http://dx.doi.org/10.1063/1.531823. Date of access: 25.03.2012.