Current revision of the fundamental Eurocode for design of civil engineering structures

Vestnik MGSU 9/2018 Volume 13
  • Marková Jana - Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic ssociated Professor; ORCID ID 0000-0002-9674-0718, Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic, 7 Šolínova, Prague 6, 166 08, Czech Republic.
  • Holický Milan - Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic Professor; ORCID ID 0000-0001-5325-6470, Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic, 7 Šolínova, Prague 6, 166 08, Czech Republic.
  • Sýkora Miroslav - Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic Associated Professor; ORCID ID 0000-0001-9346-3204., Klokner Institute, Czech Technical University (CTU), in Prague, 7 Šolínova, Prague 6, 166 08, Czech Republic, 7 Šolínova, Prague 6, 166 08, Czech Republic.

Pages 1036-1042

The present, globally-applicable revision of the fundamental EN 1990 Eurocode for the design of buildings and civil engineering structures is briefly summarised. General requirements are further elaborated with respect to structural resistance, serviceability and durability. In addition, provisions for robustness, sustainability and fire safety are included. An appropriate level of structural reliability should consider the consequences and possible causes of failure, public aversion and costs associated with reducing the risk of failure. However, the choice concerning the reliability level is left to national interpretation. The target reliability indexes are indicated for one-year and 50-year reference period, with no explicit link to the design working life being provided in the final draft of prEN 1990. It is proposed that the consequences of structural failure be organised into five categories; however, without providing recommendations on the target reliability indices for the lowest and highest consequence class. Supplementary guidance on structural robustness is proposed in prEN 1990, Annex E. A structure should have a sufficient level of robustness that it will not be damaged to an extent disproportional to the original cause. The working life design should be considered for time-dependent performance of the structures. Ultimate and serviceability limit states should be verified for all relevant design situations. Apart from the commonly-used partial factor method, which comprises a basic method for structural verification, additional guidance is also given for application of non-linear methods. The partial factors have been newly-calibrated with the aim of achieving a more balanced reliability level for structures from different materials and loading effects.

DOI: 10.22227/1997-0935.2018.9.1036-1042


The compative analysys of reinforcement steeluse in reinforced concrete structures in Russia and abroad

Vestnik MGSU 11/2013
  • Madatyan Sergey Ashotovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 129337, г. Москва, Ярославское шоссе, д. 26; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-18

Reinforced concrete is uninterruptedly developing progressive type of building materials. One of the most important advantages of reinforced concrete is the possibility of using it with reinforcing steel or composite materials of increased and high strength.As a result occurs substantial permanent growth in production, increase in strength and other service characteristics of steel rolling used for reinforcing concrete.Production and application of the modern types of reinforcement in our country started not long ago, much later, than in the USA and European countries. Until 1950 deformed reinforcement was not produced and used in our country; the production of hot-rolling reinforcement of the A400 (A-III) class started only in 1956.But already in 1960 the application of this reinforcement was 1.0 million tons a year, and in 1970 — 3.4 million tons a year.Up to the year 2012, the production and application of the deformed reinforcement of the classes A-400, A-500C and A-600C of all kinds exceeded 8.0 million tons. In order to ensure economic efficiency and competitive ability of national construction, the process of increasing the strength and workability of domestic reinforcing bar is continuously taking place. The results of this process in respect of the common untensioned reinforcement of reinforced concrete structures are discussed in the present article.We suggest to consider the mechanical and service characteristics of deformed reinforcement, which is manufactured according to the standards of our country GOST P 52544, classes A500C and B500C, GOST 5781, class A400, and Technical specifications 14-1-5596—2010, class Ан600С, grade 20Г2СФБA.For the comparative analysis we use the standard data for similar reinforcement established by EN 10080-2005 and Eurocode 2, as well as by standards ÖNORM B-420 of Austria, BC 4449/2005 of Great Britain, DIN 488 of Germany, A706M of the USA and G3142 of Japan.The standards of the above-mentioned countries slightly differ from the standardsEN 10080 and Eurocode 2, and from the Russian standards.We consider the statistical data of the real properties of hot-rolling, coldolling and thermo mechanically strengthened deformed reinforcement manufactured and certified according to GOST R 52544 and GOST 5781, produced in Russia, Byelorussia, Moldavia, Latvia, Poland, Turkey and Egypt.The fundamental difference of modern European standards from Russian standards and the standards of other countries considered in this article is that the requirements of EN 10080 and Eurocode 2 are unified for all reinforcement with the yield point of 400 to600 H/mm2 regardless of its production method.At the same time it is stated, that the actual properties of reinforcement of all groups according to EN 10080, differ essentially from those specified by this Standard and they better correspond to the Russian, Austrian and German standards.The Standard EN 10080 in the version of the year 2005 is inconvenient, because it does not determine technical classes. As a result, many European countries use their own, but not the European standards.Conclusion.The comparative analysis of our national and foreign standards of deformed rolled steel used for reinforcing concrete demonstrates that the physical and mechanical properties of the Russian and European reinforcing steel are almost the same, but for the following facts:Standard requirements established according to GOST 5781, GOST 10884 andGOST R 52544 are a bit higher than the standards of EN 10080;Reinforcement of the classes A400, A500 B500C and A600C, manufactured according to the Russian standards, can be used without recounting instead of reinforcement of the same strength classes according to EN 10080 and to the standards of other countries all over the world.

DOI: 10.22227/1997-0935.2013.11.7-18

  1. Svod pravil SP 63.13330—2012. Betonnye i zhelezobetonnye konstruktsii. Osnovnye polozheniya [Concrete and Reinforced Concrete Structures. Fundamental Principles]. Aktualizirovannaya redaktsiya SNiP 52-01—2003 [Revised Edition of Building Requirements 52-01—2003]. Moscow, NIIZhB Publ., 2012, 153 p.
  2. GOST R 52544—2006. Prokat armaturnyy svarivaemyy periodicheskogo profilya klassov A500S i V500S dlya armirovaniya zhelezobetonnykh konstruktsiy. Tekhnicheskie usloviya [All-Union Standard R 52544—2006. Deformed Weld Reinforcing Bar of the Classes A500S and V500S for Reinforcing of Concrete Structures. Technical Specifications]. Moscow, Standartinform Publ., 2006, 20 p.
  3. Eurocode 2. Design of Concrete Structures — Part 1-1 General Rules and Rules for Buildings. EN 1992-1-1. December 2004, 225 p.
  4. Almazov V.O. Proektirovanie zhelezobetonnykh konstruktsiy po evronormam [Design of Reinforced Concrete Structures According to European Requirements]. Moscow, ASV Publ., 2007, 216 p.
  5. Riskind B.Ya. Prochnost' szhatykh zhelezobetonnykh stoek s termicheski uprochnennoy armaturoy [Strength of Compressed Reinforced Concrete Columns with Thermally Strengthened Reinforcement]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1972, no. 11, p. 31—33.
  6. Chistyakov E.A., Mulin N.M., Khait I.G. Vysokoprochnaya armatura v kolonnakh [High-tensile Reinforcement in Columns]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1979, no. 8, pp. 20—21.
  7. Madatyan S.A. Tekhnologiya natyazheniya armatury i nesushchaya sposobnost' zhelezobetonnykh konstruktsiy [The Technology of Steel Tensioning and Load-bearing Capacity of Reinforced Concrete Structures]. Moscow, Stroyizdat Publ., 1980, 196 p.
  8. DIN 1045. Beton und Stahlbeton. Berlin. 1988, 84 p.
  9. EN 10080. Weldable reinforcing steel — General. May 2005, 75 p.
  10. ?NORM 4200. Teil 7. Stahlbetontragwerke. Verst?rkung f?r Beton. OIB-691-002/04, 25 p.
  11. BS 4449:2005. Steel for the Reinforcement of Concrete – Weldable reinforcing Steel – Bar, Coil and Decoiled Product – Specification. 2005, 36 p.
  12. Madatyan S.A. Armatura zhelezobetonnykh konstruktsiy [Reinforcement of Concrete Structures]. Moscow, Voentekhlit Publ., 2000, 236 p.



Vestnik MGSU 5/2013
  • Nadolski Vitaliy Valer’evich - Belarusian National Technical University (BNTU) master of sciences, assistant lecturer, Department of Metal and Timber Structures; +375 259 997 991, Belarusian National Technical University (BNTU), 65 prospekt Nezavisimosti, Minsk, 220013, Republic of Belarus; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Martynov Yuriy Semenovich - Belarusian National Technical University (BNTU) Candidate of Technical Sciences, Professor, Professor, Department of Metal and Timber Structures, Belarusian National Technical University (BNTU), 65 prospekt Nezavisimosti, Minsk, 220013, Republic of Belarus; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-20

The paper is focused on the model uncertainty related to the shear resistance of steel elements with transverse stiffeners on the basis of available test results. The paper shows the general characteristics of resistance models for shear which are used in the regulatory documents EN 1993-1-5 and SNIP II-23. Their areas of application are described. The procedure for selecting the experimental values of shear resistance is described, as well. Comparison of experimental and theoretical values of the shear resistance is performed. Statistical characteristics of the model uncertainty of the shear resistance of steel elements having transverse stiffeners are obtained. Variation of the model uncertainty using basic variables is analyzed, and significant variables are identified for the models specified in SNIP II-23. In the paper, probabilistic description of model uncertainties is analyzed. The proposed probabilistic description of the model uncertainty consists of the lognormal or normal distribution having the coefficient of variation of 0.16 and the mean value of 1.18. The author believes that further research into the models of shear resistance specified in SNiP II-23 is required with a view to their improvement. The database of experimental findings in the area of shear resistance is compiled.

DOI: 10.22227/1997-0935.2013.5.7-20

  1. SNiP II-23—81*. Stal’nye konstruktsii [Construction Norms and Rules II-23—81*. Steel Structures]. Moscow, 1991.
  2. EN 1993-1-5-2006. Eurocodes 3 – Design of steel structures – Part 1.5: Plated Structural Elements. Brussels, European Committee for Standardization, 2006, 53 p.
  3. Martynov Yu.S., Lagun Yu.I., Nadolski V.V. Modeli soprotivleniya sdvigu stal’nykh elementov, uchityvayushchie poteryu mestnoy ustoychivosti stenki [Shear Resistance Models of Steel Elements with Account for Web Buckling]. Metallicheskie konstruktsii [Metal Constructions]. 2012, vol. 18, no. 2, pp. 111—122.
  4. AISC-360-05. Specification for Structural Steel Buildings. American Institute of Steel Construction. Chicago, 2005, 256 pp.
  5. CSA-S16-01. Limit States Design of Steel Structures includes Update no. 1, 2010, Update no. 2, 2001. Mississauga, Ontario, Canadian Standards Association, 2009, 198 p.
  6. H?glund T. Strength of Steel and Aluminum Plate Girders: Shear Buckling and Overall Web Buckling of Plane and Trapezoidal Webs – Comparison with Tests. Tech. report no. 4. Stockholm, Royal Institute of Technology, Department of Structural Engineering, 1995.
  7. Posobie po proektirovaniyu stal’nykh konstruktsiy (k SNiP II-23—81* Stal’nye konstruktsii) [Handbook of Design of Steel Structures (based on Construction Norms and Rules II-23—81*. Steel Structures)]. Moscow, TsITP Gosstroy SSSR Publ., 1989, 148 p.
  8. Kuznetsov V.V., editor. Metallicheskie konstruktsii. T. 1. Obshchaya chast’. (Spravochnik proektirovshchika) [Metal Structures. Vol. 1. General Issues. (Designer’s Reference Book)]. Moscow, ASV Publ., 1998, 576 p.
  9. Basler K. Strength of Plate Girders in Shear. Proc. ASCE, Journal Structural Division. 1961, vol. 87(2), no. ST 7, pp. 181—197.
  10. H?glund T. Design of Thin Plate I-Girders in Shear and Bending with Special Reference to Web Buckling. Royal Institute of Technology, Department of Building Statics and Structural Engineering. Stockholm, Sweden, 1973.
  11. Johansson B., Maquoi R., Sedlacek G., M?ller C., Beg D. Commentary and worked examples to EN 1993-1-5 “Plated structural elements”. JRC Reports (Eurocodes related). Luxemburg, Office for Official Publication of the European Communities, 2007, 226 p.
  12. Ziemian R.D. Guide to Stability Design Criteria for Metal Structures. Hoboken, New Jersey, John Wiley & Sons, Inc., 2010, 1117 p.
  13. Gardner L. and Nethercot D. Designers’ Guide to EN 1993-1-1. Eurocode 3: Design of Steel Structures. General Rules and Rules for Buildings. London, Thomas Telford Ltd., 2005, 109 p.
  14. Basler K., Mueller J. A., Thurlimann B. and Yen B. T. Web Buckling Tests on Welded Plate Girders. Welding Research Council Bulletin no. 64, September 1960, reprint no. 165 (60-5). Fritz Laboratory Reports, 1960.
  15. Benjamin Braun. Stability of Steel Plates under Combined Loading. Stuttgart Univ., Diss. Inst. f. Konstruktion u. Entwurf, 2010, 226 p.
  16. Charlier R. and Maquoi R. Etude experimentale de la capacit? portante en cisaillement de poutres a ame pleine raidies longitudinalement par des profiles a section ferm?. CRIF, Bruxelles, MT 169, 1986.
  17. Cooper P.B., Lew H.S. and Yen B.T. Welded Constructional Alloy Steel Plate Girders. Journal Structural Division, ASCE, vol. 90, no. ST1, 1964, p. 36.
  18. Cooke N., Moss P.J., Walpole W.R., Langdon D.W., Mervyn H.H. Strength and Serviceability of Steel Girder Webs. Journal ASCE. 1983, no. 109, pp. 785—807.
  19. D’Apice M.A., Fielding D.J. and Cooper P.B. Static Tests on Longitudinally Stiffened Plate Girders. Welding Research Council. New York, Bulletin no. 117, 1966.
  20. Evans H.R. An Approach by Full-scale Testing of New Design Procedures for Steel Girders Subjected to Shear and Bending. Proceedings of the Institute of Civil Engineers. No. 81, 1986.
  21. Fielding D. J. and Cooper P. B. Static Shear Tests on Longitudinally Stiffened Plate Girders. 1965.
  22. Fujii T. Minimum Weight Design of Structures Based on Buckling Strength and Plastic Collapse. Japan, Institute of Shipbuilding, 1967, no.122.
  23. Fujii T. Comparison between the Theoretical Shear Strength of Plate Girders and the Experimental Results. Contribution to the prepared discussion. In IABSE Colloquium, vol. 11, IABSE, London, 1971, pp. 161—172.
  24. Hachirho T. A Fundamental Study on Simplified Analysis of Buckling, Load-carrying Capacity and Deformability of Girders. Kyoto University, 2004, 197 p.
  25. Lew H.S., Natarajan M. and Toprac A.A. Static Tests on Hybrid Plate Girders. Welding Research Council. Supplement vol. 75, part II, 1969, 86 p.
  26. Longbottom E. and Heyman J. Experimental Verification of the Strength of Plate Girders Designed in accordance with the Revised British Standard 153: Tests on Full-scale and on Model Plate Girders. Proceedings of Inst. Civ. Engrs., Part III. 1956, pp. 462—486.
  27. Lyse I. and Godfrey H.J. Investigation of Web Buckling in Steel Beams. Trans. ASCE, 100. 1935, pp. 675—695.
  28. Okumura T. and Nishino F. Failure Tests of Plate Girders using Large-Sized Models. Structural Engineering Laboratory Report, Department of Civil Engineering, University of Tokyo, 1966.
  29. Okumura T., Fujii T., Fukumoto Y., Nishino F. Failure Tests on Plate Girders. Structural Engineering Laboratory Report, Department of Civil Engineering, University of Tokyo, 1967.
  30. Nishino F. and Okumura T. Experimental Investigation of Strength of Plate Girders in Shear. IABSE, Proc. 8th Congr, Final Report, 1968, pp. 451—463.
  31. Rockey K. and Skaloud M. Influence of the Flexural Rigidity of Flanges upon the Load-carrying Capacity and Failure Mechanism in Shear. Acta Technica CSA V, 1969, 3.
  32. Rockey K. and Skaloud M. The Ultimate Behavior of Plate Girders Loaded in Shear. IABSE Colloquium, 1971, pp. 1—19.
  33. Rockey K., Vanltinat G. and Tang K.H. The Design of Transverse Stiffeners on Webs Loaded in Shear — an Ultimate Load Approach. Proceedings I.C.E., Part 2, 71, Dec. 1981, pp. l069—1099.
  34. Rockey K., Evans H. R. and Porter D. M. Test on Longitudinally Reinforced Plate Girder Subjected to Shear. Stability of Steel Structures. Liege, Preliminary Report, April, 1977.
  35. Sakai F., Doi K., Nishino F. and Okumura T. Failure Tests of Plate Girders Using Large Sized Models. Structural Engineering Laboratory Report, University of Tokyo, 1967.
  36. Sakai F., Fujii T. and Fukuchi Y. Review of Experiments on Plate Girders. TSSC, 1968, vol. 4, no. 27.
  37. Skaloud M. Ultimate Load and Failure Mechanism of Thin Webs in Shear. In IABSE Colloquium. Vol. 11, IABSE, London, 1971, pp. 115—127.
  38. Tang K.H. and Evans H.R. Transverse Stiffeners for Plate Girder Webs and Experimental Study. Journal of Constructional Steel Research. Vol. 4, 1984, pp. 253—280.
  39. Thomas H. Theory of Plasticity for Steel Structures - Solutions for Fillet Welds, Plate Girders and Thin Plates. Technical University of Denmark, Department of Civil Engineering, 2006, report no. R-146, p. 239.
  40. JCSS Probabilistic Model Code, Joint Committee of Structural Safety, 2001.


Results 1 - 3 of 3