Vestnik MGSU 8/2013
  • Aleksashin Sergey Vladimirovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Technology of Binders and Concretes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bulgakov Boris Igorevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of the Technology of Binders and Concretes, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 97-103

This article covers the design of an advanced multi-component additive and the study of its influence produced on the properties of fine-grained concrete. The authors also provide data on the earlier studies of the effect produced by domestic superplasticizers on the plasticity of fine-grained concrete mixtures and the curing behaviour of plasticized fine concretes. Russian-made superplasticizer Khimkom F1 was used to retain the plasticity of the fine concrete under consideration. Khimkom F1 produces a better effect on concrete curing than Polyplast SP-1, Cemactive SU-1, and Linomix SP 180-2. Superplasticizer Khimkom F1, as opposed to plasticizers based on lingo-sulfonate or naphthalene, for example S-3, has no bad odour; it is non-corrosive if applied to steel reinforcement inside concrete. The research has proved that the optimal amount of Khimkom F1 is 1.2% of the total amount of the binder.Metakaolin fume was used to improve the microstructure of the concrete, including its strength, waterand frost-resistance. Improvement of the above properties was proved in the course of the experiment. Its optimal content equals to 15% of the total amount of the binder. The study of the two domestically made water repellents (Sofexil40 and Sofexil 60-80) was conducted to identify and to compare their water and frost resistance. Experimental findings have proven that Sofexil 40 produces higher influence on the properties of the fine concrete, used for hydraulic engineering purposes, than Sofexil 60-80. The optimal content of the water repellent is 0.2% of the binder content. Sofexil 40 must be dissolved in the water in advance. Finally, the authors provide their experimental findings in terms of the optimal composition of the fine hydraulic concrete having pre-set properties.

DOI: 10.22227/1997-0935.2013.8.97-103

  1. Aleksashin S.V., Bulgakov B.I. Poluchenie melkozernistykh betonov s vysokimi ekspluatatsionnymi pokazatelyami [Production of Fine-grained High Performance Concrete]. Sbornik nauchnykh trudov Instituta stroitel'stva i arkhitektury [Collection of Research Papers of the Institute of Construction and Architecture]. Moscow, KYuG Publ., 2012, pp. 12—13.
  2. Lukuttsova N.P., Pykin A.A., Chudakova O.A. Modifitsirovanie melkozernistogo betona mikro- i nanorazmernymi chastitsami shungita i dioksida titana [Modification of Fine-grained Concrete by Micro Particles of Schungite and Titanium Dioxide]. Vestnik BGTU im. V.G. Shukhova [News Bulletin of Belgorod Shukhov State Technical University]. 2010, no. 2, pp. 67—70
  3. Falikman V.R. New High Performance Polycarboxilate Superplasticizers Based on Derivative Copolymers of Maleinic Acid. 6th International Congress “GLOBAL CONSTRUCTION” Advances in Admixture Technology. Dundee, 2005, pp. 41—46.
  4. Lukuttsova N.P. Nanomodifitsiruyushchie dobavki v beton [Nano-modifying Additives for Concrete]. Stroitel'nye materialy [Construction Materials]. 2010, no. 9, pp. 101—104.
  5. Bazhenov Yu.M., Lukuttsova N.P., Matveeva E.G. Issledovanie nanomodifitsirovannogo melkozernistogo betona [Research into Nano-modified Fine Concrete]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, vol. 2, no. 4, pp. 415—418.
  6. Shah S.P., Ahmad S.H. High Performance Concrete: Properties and Applications. McGraw-Hill, Inc., 1994, 403 p.
  7. Ramachandran V.S. Dobavki v beton: spravochnoe posobie [Additives for Concrete: Reference Book]. Moscow, Stroyizdat Publ., 1988, 291 p.
  8. Commission 42-CEA. Properties Set Concrete at Early Ages. State-of-the-art-report. Materiaux et Constructions. 1981, vol. 14, no. 4, p. 15.
  9. Fennis S.A.A.M., Walraven J.C. Design of Ecological Concrete by Particle Packing Optimization. Delft, Delft University of Technology, 2010, pp. 115—144.
  10. Batrakov V.G. Modifitsirovannye betony. Teoriya i praktika [Modified Concretes. Theory and Practice.] Moscow, Tehnoproekt Publ., 1998, 560 p.


Results 1 - 1 of 1