SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Mathematical modeling of the emission of heavy metals into water bodies from building materials derived from production waste

Vestnik MGSU 1/2016
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Boyarshinov Mikhail Gennad’evich - Perm National Research Polytechnic University (PNRPU) Doctor of Technical Sciences, Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 105-117

At the present time industrial waste is considered to be an alternative to primary natural resources when producing construction materials and products. The use of industrial waste in the construction branch allows reducing ecological load on the environment and population as a result of reducing the amount of unrecyclable waste and reducing the use of primary natural resources. Though when involving waste products as raw material in the preparation of building materials there occur environmental risks of anthropogenic impact increase on the environment. These risks are related to possible emission of heavy metals from construction materials in use. The article describes a tool which allows predicting this issue, depending on the acidity of the medium, the residence time of the material in the environment. The experimental data obtained in determining the migration activity of metals from cement concretes to aqueous solutions served as the basis for the mathematical model. The proposed model allows us to make a prediction of anthropogenic impact on the environment and commensurate this impact with the possibility of assimilation of the environment area where the building materials are applied. This will allow conducting an effective assessment of the created and applied technologies of waste disposal, taking into account the operating conditions of the materials produced.

DOI: 10.22227/1997-0935.2016.1.105-117

References
  1. Dijkstra J.J., Meeusse J.C.L., Van der Sloot H.A., Comans R.N.J. A Consistent Geochemical Modelling Approach for the Reactive Transport of Major and Trace Elements in MSWI Bottom Ash. Appl. Geochem. 2008, no. 23 (6), pp. 1544—1562. DOI: http://dx.doi.org/10.1016/j.apgeochem.2007.12.032.
  2. Eikelboom E., Ruwiel E., Goumans J.J.J.M. The Building Materials Decree: An Example of a Dutch Regulation Based On the Potential Impact of Materials on the Environment. Waste Manage. (Oxford). 2001, no. 21 (3), pp. 295—302.
  3. Fthenakis V., Wang W., Kim C.H. Life Cycle Inventory Analysis of the Production of Metals Used in Photovoltaics. Renew. Sustain. Energy Rev. 2009, no. 13 (3), pp. 493—517. DOI: http://dx.doi.org/10.1016/j.rser.2007.11.012.
  4. Quintelas C., Rocha Z., Silva B. et al. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) From Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Engineering J. July 2009, 149, 1-3, pp. 319—324. DOI: http://dx.doi.org/10.1016/j.cej.2008.11.025.
  5. Jackobsen H., Kristoferrsen M. Case Studies on Waste Minimization Practices in Europe / Topic Report — European Topic Centre on Waste. European Environment Agency, February 2002, no. 2.
  6. Pugin K.G. Voprosy ekologii ispol’zovaniya tverdykh otkhodov chernoy metallurgii v stroitel’nykh materialakh [Ecological Problems of Iron Industry Solid Waste in Construction Materials]. Stroitel’nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56. (In Russian)
  7. Pugin K.G., Vaisman Y.I. Methodological Approaches to Development of Ecologically Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential. World Applied Sciences Journal (Special Issue on Techniques and Technologies). Berlin, Springer, 2013, no. 22, pp. 28—33. DOI: http://dx.doi.org/10.5829/idosi.wasj.2013.22.tt.22135.
  8. Pugin K.G., Mal’tsev A.V. Issledovanie vozmozhnosti pererabotki metallurgicheskikh shlakov v Permskom krae putem proizvodstva trotuarnoy plitki [Investigation of the Possibilities of Smelter Slag Recycling in Perm Region by Producing Paving Flags]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 1—2, pp. 419—421. (In Russian)
  9. Kendall Alissa, Keoleian Gregory A., Lepech Michael D. Materials Design for Sustainability through Life Cycle Modeling of Engineered Cementitious Composites. Materials and Structures. 2008, vol. 41, no. 6, pp. 1117—1131. DOI: http://dx.doi.org/10.1617/s11527-007-9310-5.
  10. Bhander G.S., Christensen T.H., Hauschild M.Z. EASEWASTE — Life Cycle Modeling Capabilities for Waste Management Technologies. Int. J. Life Cycle Assess. 2010, 15,pp. 403—416.
  11. Gabler H.E., Gluh K., Bahr A., Utermann J. Quantification of Vanadium Adsorption by German Soils. J. Geochem. Explor. 2009, 103 (1), pp. 37—44. DOI: http://dx.doi.org/10.1016/j.gexplo.2009.05.002.
  12. Pugin K.G. Tyazhelye metally v otkhodakh chernoy metallurgii [Heavy Metals in Iron Industry Waste]. Molodoy uchenyy [Young Scientist]. 2010, no. 5—1, pp. 135—139. (In Russian)
  13. Batrakova G.M., Boyarshinov M.G., Goremykin V.D. Model’ dlya rascheta rasseivaniya emissii s territorii zakhoroneniya tverdykh bytovykh otkhodov [Calculation Model of Emission Dissipation from the Territory of Household Solid Waste Disposal]. Geoinformatika [Geoinformatics]. 2005, no. 2, pp. 43—49. (In Russian)
  14. Batrakova G.M., Boyarshinov M.G., Tashkinova I.N. Metodika matematicheskogo modelirovaniya biorazlozheniya nitrobenzola i anilina v pochve [Methods of Mathematical Simulation of Biodeterioration of Nitrobenzene and Aniline in the Ground]. Fundamental’nye issledovaniya [Fundamental Research]. 2014, no. 12—9, pp. 1855—1861. (In Russian)
  15. Balabanov D.S., Boyarshinov M.G. Rasseyanie otrabotannykh gazov avtotransporta nad gorodskoy territoriey [Dissipation of Exhaust Gas from Motor Transport over City Territory]. Saarbrucken, LAMBERT Academic Publishing, 2012, 120 p. (In Russian)
  16. Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Aksakovskaya L.N. Modelirovanie massoperenosa v protsessakh korrozii betonov pervogo vida (malye znacheniya chisla Fur’e) [Simulating Mass Transfer in the Process of Concretes Corrosion of the First Type (Small Values of Fourier Number)]. Stroitel’nye materialy [Construction Materials]. 2007, no. 5,pp. 70—71. (In Russian)
  17. Fedosov S.V., Rumyantseva V.E., Kas’yanenko N.S., Krasil’nikov I.V. Teoreticheskie i eksperimental’nye issledovaniya protsessov korrozii pervogo vida tsementnykh betonov pri nalichii vnutrennego istochnika massy [Theoretical and Experimental Investigations of the Corrosion Processes of the First Type of Cement Concretes with the Availability of Internal Mass Source]. Stroitel’nye materialy [Construction Materials]. 2013, no. 6, pp. 44—47.(In Russian)
  18. Kayumov R.A., Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Manokhina Yu.V., Krasil’nikov I.V. Matematicheskoe modelirovanie korrozionnogo massoperenosa geterogennoy sistemy «zhidkaya agressivnaya sreda — tsementnyy beton». Chastnye sluchai resheniya [Mathematical Simulation of Corrosion Mass Transfer of the Heterogeneous System “Liquid Aggressive Media — Cement Concrete”. Common Solution Cases]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Kazan State University of Architecture and Engineering News]. 2013, no. 4 (26), pp. 343—348. (In Russian)
  19. Fedosov S.V., Rumyantseva V.E., Kas’yanenko N.S. Fiziko-khimicheskie osnovy zhidkostnoy korrozii vtorogo vida tsementnykh betonov [Physical and Chemical Foundations of Fluid Corrosion of the Second Type of Cement Concretes]. Stroitel’stvo i rekonstruktsiya [Construction and Reconstruction]. 2010, no. 4 (30), pp. 74—77. (In Russian)
  20. Korn G., Korn T. Spravochnik po matematike [Reference Book on Mathematics]. 4th edition. Moscow, Nauka Publ., 1977, 832 p. (In Russian)

Download

Risk management of the negative impacts of building materials produced of production wastes on the environmental medium

Vestnik MGSU 6/2015
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 73-87

Basing on life cycle analysis of building materials produced of waste products the authors defined the formation stages of environmental risks of adverse impacts on the environment. The studies have revealed that one of the main environmental risks is the occurrence of secondary emission of pollutants from building materials produced of waste products when used by the end-user, which is not taken into account by the existing regulatory documents defining the environmental safety of construction materials. The questions of prevention of the possible negative impact of the construction materials based on or with addition of production waste while their use on the environment and population as a result of a number of natural and anthropogenic factors, which can lead to negative ecological effects, which are difficult to forecast, are not regulated enough. In the present conditions of the absence of regulatory framework of their ecological safety the wide use of production waste for obtaining construction materials without account for the possible ecological risks may lead to technogenic burden exceeding the acceptable level.The authors defined the main ways to reduce the environmental risks when using the resource potential of waste for the production of building materials by reducing the emissions of these pollutants while reducing their permeability.

DOI: 10.22227/1997-0935.2015.6.73-87

References
  1. Leont’ev L.I., Dyubanov V.G. Tekhnogennye otkhody chernoy i tsvetnoy metallurgii i problemy okruzhayushchey sredy [Technogenic Waste of Ferrous and Non-ferrous Industry and the Environmental Problems]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2011, no. 4, pp. 32—35. (In Russian)
  2. Ryabov G.G., Sukov M.V. Izdeliya dlya dorozhnogo stroitel’stva na osnove otkhodov promyshlennosti [Products for Road Construction Based on Production Waste]. Izvestiya TulGU. Seriya «Ekologiya i bezopasnost’ zhiznedeyatel’nosti» [News of Tula State University. Series: Ecology and Life Safety]. 2006, no. 8, pp. 115—118. (In Russian)
  3. Dijkstra J.J., Meeusse J.C.L., Van der Sloot H.A., Comans R.N.J. A Consistent Geochemical Modelling Approach for the Reactive Transport of Major and Trace Elements in MSWI Bottom Ash. Appl. Geochem. 2008, no. 23 (6), pp. 1544—1562. DOI: http://dx.doi.org/10.1016/j.apgeochem.2007.12.032.
  4. Eikelboom E., Ruwiel E., Goumans J.J.J.M. The Building Materials Decree: An Example of a Dutch Regulation Based on the Potential Impact of Materials on the Environment. Waste Manage. Oxford. 2001, no. 21 (3), pp. 295—302.
  5. Fthenakis V., Wang W., Kim C.H. Life Cycle Inventory Analysis of the Production of Metals Used in Photovoltaics. Renew. Sustain. Energy Rev. 2009, no. 13 (3), pp. 493—517. http://dx.doi.org/10.1016/j.rser.2007.11.012.
  6. Sokolov E.M., Kachuzin N.M., Ryabov G.G. Geoekologicheskie printsipy ispol’zovaniya vtorichnykh resursov [Geoecological Principles of Secondary Resources Use]. Tula, Grif i K° Publ., 2000, 360 p. (In Russian)
  7. Pugin K.G., Vaysman Ya.I., Yushkov B.S., Maksimovich N.G. Snizhenie ekologicheskoy nagruzki pri obrashchenii so shlakami chernoy metallurgii : monografiya [Decreasing the Ecological Impact while Using Iron Industry Slags : Monograph]. Perm, 2008, 316 p. (In Russian)
  8. Quintelas C., Rocha Z., Silva B. et al. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Engineering J. July 2009, 149, 1-3, pp. 319—324. DOI: http://dx.doi.org/10.1016/j.cej.2008.11.025.
  9. Jackobsen H., Kristoferrsen M. Case Studies on Waste Minimization Practices in Europe/ Topic Report — European Topic Centre on Waste. European Environment Agency, February 2002, no. 2.
  10. Indicator Fact Sheet Signals 2001 — Chapter Waste. European Environmental Agency, 2001.
  11. Leont’ev L.I., Yusfin Yu.S., Chernousov P.I. Otkhody: vozdeystvie na okruzhayushchuyu sredu i puti utilizatsii [Waste: Impact on the Environment and Ways of Utilization]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2003, no. 3, pp. 32—35. (In Russian)
  12. Shapovalov D.A., Gruzdev V.S. Vliyanie tekhnogennykh vybrosov na pochvu i rastitel'nost' na primere OAO
  13. Maksimovich N.G., Blinov S.M., Men’shikova E.A. Vozdeystvie tverdykh otkhodov Chusovskogo metallurgicheskogo zavoda na sostoyanie r. Chusovoy [Influence of Solid Waste of Chusovoy Steel Works on the Condition of the River Chusovaya]. Problemy geologii Permskogo Urala i Priural’ya : Materialy regional’noy nauchnoy konferentsii [Geological Problems of Perm Ural and Cisurals]. Perm’, Permsiy universitet Publ., 1998, pp. 152—154. (In Russian)
  14. Pugin K.G. Negativnoe vozdeystvie shlakovykh otvalov chernoy metallurgii na ob”ekty okruzhayushchey sredy na primere goroda Chusovogo [Negative Impact of Iron Industry Slagheaps on Environmental Medium on an Exapmple of Chusovoy City]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territory]. 2011, no. 2, pp. 86—90. (In Russian)
  15. Pugin K.G. Voprosy ekologii ispol’zovaniya tverdykh otkhodov chernoy metallurgii v stroitel’nykh materialakh [Ecological Problems of Iron Industry Solid Waste in Construction Materials]. Stroitel’nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56. (In Russian)
  16. Schwab O., Bayer P., Juraske R., Verones F., Hellweg S. Beyond the Material Grave: Life Cycle Impact Assessment of Leaching from Secondary Materials in Road and Earth Constructions. Waste Management. 2014, 34 (10), pp. 1884—1896. DOI: http://dx.doi.org/10.1016/j.wasman.2014.04.022.
  17. Mroueh U.M., Eskola P., Laine-Ylijoki J. Life-Cycle Impacts of the Use of Industrial By-Products in Road and Earth Construction. Waste Management. Oxford, 2001, 21(3), pp. 271—277. DOI: http://dx.doi.org/10.1016/S0713-2743(00)80055-0.
  18. Susset B., Grathwohl P. Leaching Standards for Mineral Recycling Materials — a Harmonized Regulatory Concept for the Upcoming German Recycling Decree. Waste Management. Oxford, 2011, 31 (2), pp. 201—214. DOI: http://dx.doi.org/10.1016/j.wasman.2010.08.017.
  19. Kozlov S.G., Vyazovikova I.V., Chernyy S.A., Krepysheva I.V. Ispol’zovanie otkhodov sodovogo proizvodstva v dorozhnom stroitel’stve [Application of Soda Production Waste in Road Construction]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 10—12, pp. 2604—2611. Available at: www.rae.ru/fs/?section=content&op= show_article&article_id=10002106. Date of access: 28.03.2015. (In Russian)
  20. Bhander G.S., Christensen T.H., Hauschild M.Z. EASEWASTE — Life Cycle Modeling Capabilities for Waste Management Technologies. Int. J. Life Cycle Assess. 2010, 15, pp. 403—416.
  21. Gabler H.E., Gluh K., Bahr A., Utermann J. Quantification of Vanadium Adsorption by German Soils. J. Geochem. Explor. 2009, 103 (1), pp. 37—44. DOI: http://dx.doi.org/10.1016/j.gexplo.2009.05.002.
  22. Kosson D.S., van der Sloot H.A., Sanchez F., Garrabrant A.C. An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials. Environ. Eng. Sci. 2002, 19 (3), pp. 159—204. DOI: http://dx.doi.org/10.1089/109287502760079188.
  23. Olsson S., Karrman E., Gustafsson J.P. Environmental Systems Analysis of the Use of Bottom Ash from Incineration of Municipal Waste for Road Construction. Resour. Conserv. Recycl. 2006, 48, pp. 26—40.

Download

Results 1 - 2 of 2