Defining regulatory requirements for water supply systems in Vietnam

Vestnik MGSU 1/2014
  • Deryushev Leonid Georgiyevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associated Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pham Ha Hai - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Deryusheva Nadezhda Leonidovna - Moscow State University of Civil Engineering (MGSU) ostgraduate student, Department of Water Disposal and Aquatic Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 125-132

In the article the authors offer their suggestions for improving the reliability of the standardization requirements for water supply facilities in Vietnam, as an analog of building regulations of Russia 31.13330.2012. In Russia and other advanced countries the reliability of the designed water supply systems is usual to assess quantitatively. Guidelines on the reliability assessment of water supply systems and facilities have been offered by many researchers, but these proposals are not officially approved. Some methods for assessing the reliability of water supply facilities are informally used in practice when describing their quality. These evaluation methods are simple and useful. However, the given estimations defy common sense and regulatory requirements used by all the organizations, ministries and departments, for example, of Russia, in the process of allowances for restoration and repair of water supply facilities. Inadequacy of the water supply facilities assessment is shown on the example of assessing the reliability of pipeline system. If we take MTBF of specific length of the pipeline as reliability index for a pipeline system, for example, 5 km, a pipeline of the similar gauge, material and working conditions with the length of 5 m, according to the estimation on the basis of non-official approach, must have a value of MTBF 1000 times greater than with the length of 5 km. This conclusion runs counter to common sense, for the reason that all the pipes in the area of 5 km are identical, have the same load and rate of wear (corrosion, fouling, deformation, etc.). It was theoretically and practically proved that products of the same type in the same operating conditions (excluding determined impact of a person), work as an entity, which MTBF is equal to the average lifetime. It is proposed to take the average service life as a reliability indicator of a pipeline. Durability, but not failsafety of the pipe guarantees pipeline functioning. It is proved that not a specific pipeline length should be taken for an element of a pipeline system, but the repair area, which is in two sides limited by isolation valve and is completely disconnected for the time of recovery or any other need.

DOI: 10.22227/1997-0935.2014.1.125-132

References
  1. Regulations 31.13330.2012. Vodosnabzhenie. Naruzhnye seti i sooruzheniya «Aktualizirovannaya redaktsiya SNiP 2.04.02—84» (utv. Prikazom Minregiona Rossii ot 29.12.2011 ¹ 635/14) [Water Supply. External Supply Lines and Constructions “Revised Edition of Construction Regulations 2.04.02—84” (Approved by the Directive of the Ministry of Regional Development of Russia 29.12.2011 ¹ 635/14]. Moscow, 2012.
  2. Regulations 32.13330.2012. Kanalizatsiya. Naruzhnye seti i sooruzheniya. «Aktualizirovannaya redaktsiya SNiP 2.04.03—85» (utv. Prikazom Minregiona Rossii ot 29.12.2011 ¹ 635/11) [Conduit. External Supply Lines and Constructions “Revised Edition of Construction Regulations 2.04.02—85” (Approved by the Directive of the Ministry of Regional Development of Russia 29.12.2011 ¹ 635/11). Moscow, 2012.
  3. RF Government Regulation from 16.02.2008 # 87 (Edition from 08.08.2013) «O sostave razdelov proektnoy dokumentatsii i trebovaniyakh k ikh soderzhaniyu» (s izmeneniyami i dopolneniyami, vstupayushchimi v silu s 01.01.2014) [On the Composition of the Chapters of Planning Documentation and Requirements to their Content].
  4. TCVN Vietnam 33—2006. Water Supply — Distribution System and Facilities — Design Standard.
  5. GOST 27.002—89. Nadezhnost' v tekhnike. Terminy i opredeleniya [All Union State Standard 27.002—89. Reliability of Technology. Terms and Definitions]. Moscow, 1989.
  6. GOST R 53480—2009. Nadezhnost' v tekhnike. Terminy i opredeleniya [All Union State Standard R 53480—2009. Reliability of Technology. Terms and Definitions]. Moscow, 2009.
  7. GOST 27.003—83. Vybor i normirovanie pokazateley nadezhnosti [All Union State Standard 27.003—83. Choice and Standardization of Reliability Index]. Moscow, 2009.
  8. Methodical Guidelines 3-69. Metodika vybora nomenklatury normiruemykh pokazateley nadezhnosti tekhnicheskikh ustroystv [Choice Procedure of the List of Standardized Reliability Index of Technical Devices]. Moscow, 1970.
  9. Gnedenko B.V., Belyaev Yu.K., Solov'ev A.D. Matematicheskie metody v teorii nadezhnosti [Mathematical Methods in the Reliability Theory]. Moscow, Nauka Publ., 1965.
  10. Barlou R., Proshan F. Matematicheskaya teoriya nadezhnosti [Mathematical Reliability Theory]. Moscow, Sovetskoe radio Publ., 1969, pp. 36—37.
  11. Skotnikov Yu.A. Statistika povrezhdeniy vodoprovodnykh setey [Statistics of Water Supply Systems Damages]. Problemy nadezhnosti sistem vodosnabzheniya: Tezisy dokladov Vsesoyuznoy konferentsii po nadezhnosti sistem vodosnabzheniya [Problems of Water Supply Systems Reliability: Reports of All-Union Conference on Water Supply Systems Reliability]. Moscow, 1973, pp. 53—60.
  12. Normy amortizatsionnykh otchisleniy na polnoe vosstanovlenie osnovnykh fondov narodnogo khozyaystva SSSR: Postanovlenie Soveta Ministrov SSSR 22.10.1990 g. ¹ 1072 [Norms of Amortization on Full Recovery of the Main Funds of National Economy of the USSR from 22.10.1990 ¹ 1072]. Available at: http://www.consultant.ru/document/cons_doc_LAW_1927/?frame=2. Date of access: 15.11.2013.
  13. ASTM D2992—96. Standard Practice for Obtaining Hydrostatic or Pressure Design Basis for Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings. Available at: http://www.astm.org/DATABASE.CART/HISTORICAL/D2992-96E1.htm. Date of access: 20.11.2013.
  14. Abramov N.N. Nadezhnost' sistem vodosnabzheniya [Reliability of Water Supply Systems]. Moscow, Stroyizdat Publ., 1979.
  15. Deryushev L.G., Minaev A.V. Otsenka nadezhnosti sistem vodosnabzheniya [Reliability Estimation of Water Supply Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 1988, no. 11, pp. 4—5.
  16. Deryushev L.G. Pokazateli nadezhnosti truboprovodnykh sistem vodosnabzheniya i vodootvedeniya [Reliability Index of Water Supply and Water Disposal Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2000, no. 12, pp. 6—9.
  17. Herz R.K. Protsess stareniya i neobkhodimost' vosstanovleniya vodoprovodnykh setey [Ageing Processes and Rehabilitation Needs of Drinking Water Distribution Networks]. AKVA Publ., 1996, no. 9, pp. 6—8.
  18. Haviland R.P. Inzhenernaya nadezhnost' i raschet na dolgovechnost' [Engineering Reliability and Long Life Design]. Moscow, Energiya Publ., 1966.

Download

Results 1 - 1 of 1