Pile-foundation system shock loading in an axisymmetric approach

Vestnik MGSU 8/2015
  • Vasenkova Ekaterina Viktorovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Senior Lecturer, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zuev Vladimir Vasil’evich - Moscow State Institute of Radio Engineering, Electronics and Automation (MIREA Doctor of Physical and Mathematical Sciences, Professor, chair, Department of Applied Mathematics and Informatics, Moscow State Institute of Radio Engineering, Electronics and Automation (MIREA, 20 Stromynka str., Moscow, 107996, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 101-108

The basic problem of structural mechanics, namely the problem of pile shock loading sunk in a foundation, has been examined in an axisymmetric approach within defining relations for irreversible deformations offered earlier in the space of deformations. As a model of the theory of plasticity, the Mises model generalized by the authors has been accepted, the use of which solves a nonstationary system of nine two-dimensional equations with various entry and boundary conditions. Enlightened attitudes use approximate engineering approaches which allow estimating the behavior of a pile-foundation system. A solution is constructed mainly with the use of the theory of linear-elastic continuum. However they do not enable to consider various peculiarities of deformation behavior of soils and pile materials and to give an appropriate detailed picture of a system mode of deformation. Mechanical peculiarities of the behavior of foundation and pile materials discovered recently demand more enlightened attitudes to analyze a mode of deformation in a pile-foundation system considering both plasticity and fracture. The offered approach enables to give a complete picture of a mode of deformation in a pile-foundation system at any time and a picture of occurrence and development of plasticity and fracture zones.

DOI: 10.22227/1997-0935.2015.8.101-108

References
  1. Ter-Martirosyan A.Z. Ostatochnye deformatsii i napryazheniya v gruntovoy srede pri deystvii tsiklicheskoy nagruzki [Residual Deformations and Stresses in Soil Medium under Cyclic Load]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : sbornik nauchnykh trudov XXIII Mezhdunarodnoy mezhvuzovskoy nauchno-prakticheskoy konferentsii molodykh uchenykh, doktorantov i aspirantov, 14—21.04.2010 [Collection of Scientific Papers of the 23rd International Interuniversity Scientific-Practical Conference of Young Scientists, Doctoral and Post-Graduate Students “Construction — Formation of Living Environment”, 14—21.04.2010]. Moscow, MGSU Publ., 2010, pp. 815—819. (In Russian)
  2. Burlakov V.N., Ter-Martirosyan A.Z. Dilatansiya, vliyanie na deformiruemost’ [Dilatancy, iInfluence on Deformability]. Sbornik trudov yubileynoy konferentsii, posvyashchennoy. 80-letiyu kafedry mekhaniki gruntov, 110-letiyu N.A. Tsytovicha, 100-letiyu S.S. Vyalova, Moskva [Proceedings of the Jubilee Conference Dedicated to the 80th Anniversary of the Department of Soil Mechanics, the 110-year Anniversary of N.A. Tsytovich, the 100th Anniversary of S.S. Vyalov, Moscow]. Moscow, MGSU Publ., 2010, pp. 105—112. (In Russian)
  3. Ter-Martirosyan Z.G., Ala Said Mukhammed Abdul Malek, Ter-Martirosyan A.Z., Ainbetov I.K. Napryazhenno-deformirovannoe sostoyanie dvukhsloynogo osnovaniya s preobrazovannym verkhnim sloem [Stress-Strain State of a double-layer foundation with a transformed upper layer]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 81—95. (In Russian)
  4. Zuev V.V., Shmeleva A.G. Osesimmetrichnoe udarnoe nagruzhenie uprugoplasticheskoy sredy s razuprochneniem i peremennymi uprugimi svoystvami [Axisymmetric Shock Loading of an Elasto-Plastic Medium with Softening and Variable Elastic Properties]. Vestnik Samarskogo gosudarstvennogo universiteta : Estestvennonauchnaya seriya [Vestnik of Samara State University : Natural Sciences]. 2007, no. 2 (52), pp. 100—106. (In Russian)
  5. Zuev V.V., Shmeleva A.G. Modelirovanie povedeniya sloistykh zashchitnykh pregrad pri dinamicheskikh nagruzkakh [Modeling of the Behavior for Stratified Protective Barriers at Dynamic Loads]. Promyshlennye ASU i kontrollery [Industrial Automatic Control Systems and Controllers]. 2009, no. 12, pp. 28—30. (In Russian)
  6. Zuev V.V., Shmeleva A.G. Nekotorye aktual’nye zadachi dinamicheskogo nagruzheniya uprugoplasticheskikh sred s uslozhnennymi svoystvami [Some Current Problems of Dynamic Loading for Elasto-Plastic Media with Complicated Properties]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod]. 2011, no. 4 (5), pp. 2189—2191. (In Russian)
  7. Shmeleva A.G. Udarnoe nagruzhenie plasticheskikh sred [Shock Loading of Plastic Media]. LAP Lambert Academic Publishing, 2012, 128 p. (In Russian)
  8. Mata M., Casals O., Alcal J. The Plastic Zone Size in Indentation Experiments: The Analogy with the Expansion of a Spherical Cavity. Int. J. of Solids and Structures. 2006, vol. 43, no. 20, pp. 5994—6013. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2005.07.002.
  9. Khodakov S. Physicochemical Mechanics of Grinding of Solids. Shuili Xuebao/Journal of Hydraulic Engineering. 1998, no. 9, pp. 631—643.
  10. Demêmes D., Dechesne C.J., Venteo S., Gaven F., Raymond J. Development of the Rat Efferent Vestibular System on the Ground and in Microgravity. Developmental Brain Research. 2001, vol. 128, no. 1, pp. 35—44. DOI: http://dx.doi.org/10.1016/S0165-3806(01)00146-8.
  11. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Internal Blast Loading in a Buried Lined Tunnel. Int. J. of Impact Engineering. 2008, vol. 35, no. 3, pp. 172—183. DOI: http://dx.doi.org/10.1016/j.ijimpeng.2007.01.001.
  12. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Blast Response of a Lined Cavity in a Porous Saturated Soil. Int. J. of Impact Engineering. 2008, vol. 35, no. 9, pp. 953—966. DOI: http://dx.doi.org/10.1016/j.ijimpeng.2007.06.010.
  13. Aptukov V.N. Expansion of a Spherical Cavity in a Compressible Elastoplastic Medium. Report 1. Effect on Mechanical Characteristics, Free Surface, and Lamination. Strength of Materials. 1991, vol. 23, no. 12, pp. 1262—1268. DOI: http://dx.doi.org/10.1007/BF00779445.
  14. Anand L., Gu C. Granular Materials: Constitutive Equations and Strain Localization. Journal of the Mechanics and Physics of Solids. 2000, vol. 48, no. 8, pp. 1701—1733. DOI: http://dx.doi.org/10.1016/S0022-5096(99)00066-6.
  15. Zou J.-F., Li L., Zhang J.-H., Peng J.-G., Wu Y.-Z. Unified Elastic Plastic Solution for Cylindrical Cavity Expansion Considering Large Strain and Drainage Condition. Gong Cheng Li Xue/Engineering Mechanics. 2010, vol. 27, no. 6, pp. 1—7.
  16. Frishter L.Yu. Raschetno-eksperimental’nyy metod issledovaniya napryazhenno-deformiruemogo sostoyaniya sostavnykh konstruktsiy v zonakh kontsentratsii napryazheniy [Computational and Experimental Method of Stress-Strain State Investigation of Composite Structures in the Areas of Stress Concentration]. Stroitel’naya mekhanika inzhenernykh konstruktsiy sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2008, no. 2, pp. 20—27. (In Russian)
  17. Frishter L.Yu., Mozgaleva M.L. Sopostavlenie vozmozhnostey chislennogo i eksperimental’nogo modelirovaniya napryazhenno-deformiruemogo sostoyaniya konstruktsiy s uchetom ikh geometricheskoy nelineynosti [Comparison of Capabilities of Numerical and Experimental Simulation for Stress-Strain State of Structures Subject to their Geometric Nonlinearity]. International Journal for Computational Civil and Structural Engineering. 2010, vol. 6, no. 1—2, pp. 221—222. (In Russian)
  18. Antonov V.I. Nachal’nye napryazheniya v anizotropnom neodnorodnom tsilindre, obrazovannom namotkoy [Initial Stresses in an Anisotropic Nonuniform Cylinder Created by Winding]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 1, pp. 29—33. (In Russian)
  19. Antonov V.I. Metod opredeleniya nachal’nykh napryazheniy v rulone pri nelineynoy zavisimosti mezhdu napryazheniyami i deformatsiyami [Method of Initial Stress Determination in a Roll with Nonlinear Dependence of Stresses and Deformations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 3, pp. 177—180. (In Russian)
  20. Antonov V.I. Napryazheniya v rulone pri dopolnitel’nom natyazhenii lenty [Stresses inside a Roll in Case of Higher Belt Tension]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 24—29. (In Russian)
  21. Zuev V.V. Opredelyayushchie sootnosheniya i dinamicheskie zadachi dlya uprugoplasticheskikh sred s uslozhnennymi svoystvami [Defining Relations and Dynamic Problems for Elasto-Plastic Media with Complicated Properties]. Moscow, Fizmatlit Publ., 2006, 176 p. (In Russian)

Download

Results 1 - 1 of 1