BEDDINGS AND FOUNDATIONS, SUBTERRANEAN STRUCTURES. SOIL MECHANICS

INTERACTION OF A LONG PILE OF FINITE STIFFNESS WITH SURROUNDING SOIL AND FOUNDATION CAP

Vestnik MGSU 9/2015
  • Ter-Martirosyan Armen Zavenovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor of the Department of Soil Mechanics and Geotechnics, Head of Research and Education Center «Geotechnics», Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Trinh Tuan Viet - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Soil Mechanics, Bases and Foundations, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 72-83

The article presents the formulation and analytical solution to a quantification of stress strain state of a two-layer soil cylinder enclosing a long pile, interacting with the cap. The solution of the problem is considered for two cases: with and without account for the settlement of the heel and the underlying soil. In the first case, the article is offering equations for determining the stresses of pile’s body and the surrounding soil according to their hardness and the ratio of radiuses of the pile and the surrounding soil cylinder, as well as formulating for determining equivalent deformation modulus of the system “cap-pile-surrounding soil” (the system). Assessing the carrying capacity of the soil under pile’s heel is of great necessity. In the second case, the article is solving a second-order differential equation. We gave the formulas for determining the stresses of the pile at its top and heel, as well as the variation of stresses along the pile’s body. The article is also formulating for determining the settlement of the foundation cap and equivalent deformation modulus of the system. It is shown that, pushing the pile into underlying layer results in the reducing of equivalent modulus of the system.

DOI: 10.22227/1997-0935.2015.9.72-83

References
  1. Nadai A. Theory of Flow and Fracture of Solids. Vol. 1. New York, McGraw-Hill, 1950, 572 p.
  2. Florin V.A. Osnovy mekhanicheskikh gruntov [Fundamentals of Mechanical Soil]. Vol. 1. Moscow, Gosstroyizdat Publ., 1959, 356 p. (In Russian)
  3. Telichenko V.I., Ter-Martirosyan Z.G. Vzaimodeystvie svai bol’shoy dliny s nelineyno deformiruemym massivom grunta [Interaction between Long Piles and the Soil Body Exposed to NonLinear Deformations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 22—27. (In Russian)
  4. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14. (In Russian)
  5. Ter-Martirosyan Z.G., Trinh Tuan Viet. Vzaimodeystvie odinochnoy dlinoy svai s osnovaniem s uchetom szhimaemosti stvola svai [Interaction between a Single Long Pile and the Bedding with Account for Compressibility of the Pile Shaft]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 104—110. (In Russian)
  6. Mattes N.S., Poulos H.G. Settlement of Single Compressible Pile. Journal SoilMech. Foundation ASCE. 1969, vol. 95, no. 1, pp. 189—208.
  7. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p. (In Russian)
  8. Ter-Martirosyan A.Z., Ter-Martirosyan Z.G., Trinh Tuan Viet, Luzin I.N. Osadka i nesushchaya sposobnost’ dlinnoy svai [Settlement and Bearing Capacity of Long Pile]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 5, pp. 52—60. (In Russian)
  9. Coyle H.M., Reese L.C. Load Transfer for Axially Loaded Piles in Clay. Journal Soil Mechanics and Foundation Division, ASCE. March1996, vol. 92, no. 2, pp. 1—26.
  10. Bartolomey A.A., Omel’chak I.M., Yushkov B.S. Prognoz osadok svaynykh fundamentov [Forecasting the Settlement of Pile Foundation]. Moscow, Stroyizdat Publ., 1994, 384 p. (In Russian)
  11. Randolph M.F., Wroth C.P. Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978, vol. 104, no. 12, pp. 1465—1488.
  12. Van Impe W.F. Deformations of Deep Foundations. Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991, vol. 3, pp. 1031—1062.
  13. Prakash S., Sharma H.D. Pile Foundation in Engineering Practice. John Wiley & Sons, 1990, 768 p.
  14. Malyshev M.V., Nikitina N.S. Raschet osadok fundamentov pri nelineynoy zavisimosti mezhdu napryazheniyami i deformatsiyami v gruntakh [Calculation of the Base Settlements in Non-Linear Relation between Stresses and Displacements of Soil]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 1982, no. 2, pp. 21—25. (In Russian)
  15. Hansen J.B. Revised and Extended Formula for Bearing Capacity. Bulletin 28. Danish Geotechnical Institute, Copenhagen, 1970, pp. 5—11.
  16. Joseph E.B. Foundation Analysis and Design. McGraw-Hill, Inc, 1997, 1240 p.
  17. Ter-Martirosyan Z.G., Strunin P.V., Trinh Tuan Viet. Szhimaemost’ materiala svai pri opredelenii osadki v svaynom fundamente [The Influence of the Compressibility of Pile Material in Determining the Settlement of Pile Foundation]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2012, no. 10, pp. 13—15. (In Russian)
  18. Vijayvergiya V.N. Load-Movement Characteristics of Piles. Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977, pp. 269—284.
  19. Seed H.B., Reese L.C. The Action of Soft Clay along Friction Piles. Trans., ASCE. 1957, vol. 122, no. 1, pp. 731—754.
  20. Booker J., Poulos H.G. Analysis of Creep Settlement of Pile Foundation. Journal Geotechnical Engineering division. ASCE. 1976, vol. 102, no. 1, pp. 1—14.
  21. Poulos H.G., Davis E.H. Pile Foundation Analysis and Design. New York, John Wiley and Sons, 1980, 397 p.

Download

Results 1 - 1 of 1