DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Analytical solution of physically nonlinear problem for an inhomogeneous thick-walled cylindrical shell

Vestnik MGSU 11/2015
  • Andreev Vladimir Igorevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, corresponding member of Russian Academy of Architecture and Construction Sciences, chair, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Polyakova Lyudmila Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Master student, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 38-45

Among the classical works devoted to Solid Mechanics a significant place is occupied by the studies taking into account the physical and geometric nonlinearity. Also there is enough of works, which concern linear problems taking into account the inhomogeneity of the material. At the same time there are very few publications, which take into account both effects (non-linearity and inhomogeneity). This is due to the lack of experimental data on the influence of various factors on the parameters defining the non-linear behavior of the materials. Thus it is of great importance to study the influence of inhomogeneity when solving the problems of structures made of physically nonlinear materials. This article provides a solution to one of the problems of the nonlinear theory of elasticity taking into account the inhomogeneity. The problem is solved in an axisymmetric formulation, i.e. all the parameters of the nonlinear relationship between the intensities of stresses and strains are functions of the radius. The article considers an example - the stress distribution in the inhomogeneous soil massif with a cylindrical cavity.

DOI: 10.22227/1997-0935.2015.11.38-45

References
  1. Andreev V.I., Malashkin Yu.N. Raschet tolstostennoy truby iz nelineyno-uprugogo materiala [Calculation of Thick-Walled Pipe of a Nonlinear-Elastic Material]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 1983, no. 6, pp. 70—72. (In Russian)
  2. Birger I.A. Nekotorye obshchie metody resheniya zadach teorii plastichnosti [Some Common Methods for Solving the Problems of the Theory of Plasticity]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1951, vol. 15, no. 6, pp. 765—770. (In Russian)
  3. Novozhilov I.V. Ob utochnenii predel’nykh modeley mekhaniki [On a Refinement of Limit Models of Mechanics]. Nelineynaya mekhanika [Nonlinear Mechanics]. Moscow, Fizmatlit Publ., 2001, 432 p. (In Russian)
  4. Stupishin L.U., Nikitin K.E. Numerical Research Methodology of Free Oscillations of Geometrically Nonlinear Shell Using the Mixed Finite Element Method. Advanced Materials Research. 2014, vol. 988, pp. 338—341. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.988.338.
  5. Stupishin L.U., Nikitin K.E. Determining the Frequency of Free Oscillations Geometrically Nonlinear Shell Using the Mixed Finite Element Method. Applied Mechanics and Materials. 2014, vols. 580—583, pp. 3017—3020. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.580-583.3017.
  6. Grigorenko Ya.M., Vasilenko A.T., Pankratova N.D. Nesimmetrichnaya deformatsiya tolstostennykh neodnorodnykh sfericheskikh obolochek [Asymmetrical Non-Uniform Deformation of the Thick-Walled Spherical Shells]. Doklady AN USSR [Reports of the Ukrainian Academy of Sciences ]. Series A, 1981, no. 6, pp. 42—45. (In Russian)
  7. Kolchin G.B. Raschet elementov konstruktsiy iz uprugikh neodnorodnykh materialov [Calculation of Structural Elements Made of Inhomogeneous Elastic Materials]. Kishinev, Kartya Moldovenyaske Publ., 1971, 172 p. (In Russian)
  8. Kolchin G.B. Ploskie zadachi teorii uprugosti neodnorodnykh tel [Plane Problems of Elasticity Theory of Inhomogeneous Bodies]. Kishinev, Shtiintsa Publ., 1977, 119 p. (In Russian)
  9. Ol’shak V., Rykhlevsky Ya., Urbanovskiy V. Teoriya plastichnosti neodnorodnykh tel [Theory of Plasticity of Heterogeneous Bodies]. Translated from English. Moscow Mir, 1964. 156 s. (In Russian)
  10. Rostovtsev N.A. K teorii uprugosti neodnorodnykh tel [To the Theory of Elasticity of Inhomogeneous Bodies]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1964, vol. 28, no. 4, pp. 601—611. (In Russian)
  11. Nowinski J. Axisymmetric Problem of the Steady-State Thermal-Dependent Properties. Applied Scientific Research. 1964, vol. 12, no. 4—5, pp. 349—377. DOI: http://dx.doi.org/10.1007/BF03185007.
  12. Olszak W., Urbanovski W., Rychlewski J. Sprężysto-plastyczny gruboscienny walec niejednorodny pod działaniem parcia wewnetrznego i siły podłużnej. Arch. mech. stos. 1955, vol. VII, no. 3, pp. 315—336.
  13. Olszak W., Urbanowski W. Sprężysto-plastyczna gruboscienna powłoka kulista z materiału niejednorodnego poddana działaniu cisnienia wewnetrznego i zewnetrznego. Rozprawy inżynierskie. 1956, vol. IV, no. 1, pp. 23—41.
  14. Andreev V.I. Ravnovesie tolstostennogo shara iz nelineynogo neodnorodnogo materiala [Equilibrium of a Thick-Walled Sphere Made of Nonlinear Inhomogeneous Material]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 1983, no. 2, pp. 24—27. (In Russian)
  15. Andreev V.I. Nekotorye zadachi i metody mekhaniki neodnorodnykh tel [Some Problems and Methods of Inhomogeneous Bodies Mechanics]. Moscow, ASV Publ., 2002, 288 p. (In Russian)
  16. Vasilenko A.T., Grigorenko Ya.M., Pankratova N.D. Napryazhennoe sostoyanie tolstostennykh neodnorodnykh sfericheskikh obolochek pri nesimmetrichnykh nagruzkakh [The Stress State of Thick-Walled Non-Uniform Spherical Shells]. Prikladnaya mekhanika [Applied Mechanics]. 1982, vol. XVIII, no. 4, pp. 22—28. (In Russian)
  17. Grigorenko Ya.M., Vasilenko A.T., Pankratova N.D. O reshenii zadach statiki sloistykh obolochek v trekhmernoy postanovke [On the Solution of Statics Problems of Layered Shells in Three-Dimensional Statement]. Vychislitel’naya i prikladnaya matematika [Computational and Applied Mathematics]. 1981, no. 43, pp. 123—132. (In Russian)
  18. Andreev V.I. About the Unloading in Elastoplastic Inhomogeneous Bodies. Applied Mechanics and Materials. 2013, vols. 353—356, pp. 1267—1270. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.353-356.1267.
  19. Lukash P.A. Osnovy nelineynoy stroitel’noy mekhaniki [Fundamentals of Nonlinear Structural Mechanics]. Moscow, Stroyizdat Publ., 1978, 208 p. (In Russian)
  20. Andreev V.I. Equilibrium of a Thick-Walled Sphere of Inhomogeneous Nonlinear-Elastic Material. Applied Mechanics and Materials. 2013, vols. 423—426, pp. 1670—1674. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.423-426.1670.

Download

Results 1 - 1 of 1