HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Calculation of spiral turbine cases according to the equations of flow caused by vortex discharge - circle

Vestnik MGSU 11/2015
  • Mikhaylov Ivan Evgrafovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Alisultanov Ramidin Semedovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Assistant Lecturer, Department of Engineering Geodesy, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 142-156

The authors considered the issues of spiral turbine cases calculation with the help of the equations of fluid flow line of a potential flow induced by vortex discharge-circle situated on an infinite impenetrable cylinder in infinite space filled with ideal (nonviscous) fluid and the characteristics of the flow in spiral cases. It was established that: 1) the stated equations allow calculating the spiral cases, which differ in constructive parameters and the direction of the flow at the entry to the stator of the turbine; 2) slope angle of spiral cones and the direction of the flow at the entry into the stator significantly influence the dimensions of the spiral case; 3) the shape of the cross-sections of the spiral differs from the T-shaped and circle ones usually applied today; 4) the height of the cross-sections is greater than their width. This difference grows in the direction from the entry section to the tooth of the spiral case; 5) the dimensions of the calculated spiral cases are smaller than the dimensions of the cases with round cross sections and bigger than the ones with T shape. It was stated that the theoretical characteristics of the floe formed by spiral case calculated according to the equations of the potential flow induced by vortex discharge-circle situated on an infinite impenetrable cylinder are in good agreement with the experimental characteristics and are favourable for flow-around of stay vanes and guide vanes of turbines.

DOI: 10.22227/1997-0935.2015.11.142-156

References
  1. Mikhaylov I.E., Alisultanov R.S. Vikhrevoy stok — okruzhnost’, raspolozhennyy na beskonechnom nepronitsaemom tsilindre [Vortex Discharge — Circle Situated on Infinite Impenetrable Cylinder]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 10, pp. 153—161. (In Russian)
  2. Mikhaylov I.E., Alisultanov R.S. Stok — okruzhnost’, raspolozhennyy na poverkhnosti ili vnutri beskonechnogo nepronitsaemogo tsilindra [Discharge — Circle Situated on the Surface or Inside an Infinite Impermeable Cylinder]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 8, pp. 140—149. (In Russian)
  3. Mikhaylov I.E. Turbinnye kamery gidroelektrostantsiy [Turbine Cases of HPPs]. Moscow, Energiya Publ., 1970, 272 p. (In Russian)
  4. Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, vol. 32, no. 8, pp. 1598—1605. DOI: http://dx.doi.org/10.2514/3.12149
  5. Rusanov A.V., Kos’yanov D.Yu., Sukhorebryy P.N., Khorev O.N. Chislennoe issledovanie prostranstvennogo vyazkogo techeniya zhidkosti v spiral’noy kamere osevoy gidroturbiny [Numerical Investigation of Space Viscous Liquid Flow in a Spiral Case of an Axial Flow Turbine]. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern-European Journal of Enterprise Technologies]. 2010, vol. 5, no. 7, pp. 33—36. (In Russian)
  6. Rusanov A.V., Kos’yanov D.Yu. Chislennoe modelirovanie techeniy vyazkoy neszhimaemoy zhidkosti s ispol’zovaniem neyavnoy kvazimonotonnoy skhemy Godunova povyshennoy tochnosti [Numerical Modelling of the Flows of a Viscous Incompressible Fluid Using Implicit Quasimotor Godunov Scheme of an Extended Precision]. ]. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern-European Journal of Enterprise Technologies]. 2009, vol. 5, no. 4, pp. 4—7. (In Russian)
  7. Tao Jiang, Kezhen Huang. The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field. World Journal of Mechanics. 2013, vol. 3 (04), pp. 230—235. DOI: http://dx.doi.org/10.4236/wjm.2013.34023.
  8. Shi F. and Tsukamoto H. Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction Diffuser Pump Stage. ASME Journal of Fluid Engineering. 2001, vol. 123 (3). DOI: http://dx.doi.org/10.1115/1.1385835.
  9. Wu K.Q. and Huang J. Numerical Analysis of the Fan Volute Internal Vortex Flow. Engineering Thermophysics. 2001, vol. 22, no. 3, pp. 316—319.
  10. Pfau A., Treiber M., Sell M., Gyarmathy G. Flow Interaction from the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal. Journal of Turbomachinery. 2001, vol. 123 (2), pp. 342—352. DOI: http://dx.doi.org/10.1115/1.1368124
  11. Schlienger J., Pfau A., Kalfas A.I., Abhari R.S. Single Pressure Transducer Probe for 3D Flow Measurements. 16 Symposium on Measurement Technology in Turbomachinery, 24—25.9.2002. Cambridge, 2002, 8 p.
  12. Rusch D., Pfau A., Schlienger J., Kalfas A.I., Abhari R.S. Deterministic Unsteady Vorticity Field in a Driven Axisymmetric Cavity Flow. Accepted at the 12th International Conference on Fluid Flow Technologies, September 3—6, 2003, Budapest, Hungary. 2003.
  13. Bubenchikov A.M., Korobitsyn V.A., Korobitsyn D.V., Kotov P.P., Shokin Yu.I. Chislennoe modelirovanie osesimmetrichnykh razryvnykh potentsial’nykh mnogosvyaznykh techeniy neszhimaemoy zhidkosti [Numerical Modeling of Axisymmetric Noncontinuous Potential Multiple Connected Flows of Incompressible Fluids]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Computational Mathematics and Mathematical Physics]. 2014, vol. 54, no. 7, pp. 1194—1202. (In Russian)
  14. Vaynshteyn I.I., Litvinov P.S. Model‘ M. A. Lavrent‘eva o skleyke vikhrevykh i potentsial‘nykh techeniy ideal‘noy zhidkosti [The Model of M. A. Lavrentiev on Adhesion of Vortex and Potential Flows]. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva [Vestnik SibSAU. Aerospace Technologies and Control Systems]. 2009, no. 3 (24), pp. 7—9. (In Russian)
  15. Vaynshteyn I.I., Fedotova I.M. Zadacha Gol’dshtika o skleyke vikhrevykh techeniy ideal’noy zhidkosti v osesimmetricheskom sluchae [Goldshtick Problem on Adhesion of Vortex Flows of an Ideal Fluid in Axisymmetric Case]. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva [Vestnik SibSAU. Aerospace Technologies and Control Systems]. 2014, no. 3 (55), pp. 48—54. (In Russian)
  16. Yan H.J., Hu D.M. and Li J. Numerical Simulation of Flow Field for Horizontal-Axis Wind Turbine Rotor. Journal of Shanghai University of Electric Power. 2010, vol. 26, no. 2, pp. 123—126.
  17. Yang C.Z., Liu H.C. and Zhou Y.L. The Design of Horizontal Axis Wind Turbine Blades and the Analysis of Flow Field Based on CFD. Journal of Northeast Dianli University. 2010, vol. 30, no. 1, pp. 21—26.
  18. Zhang D.H., Li W., Lin Y.G., Ying Y. and Yang C.J. Simulation of Generation System of Marine Current Turbine with Pressure-Maintaining Storage Based on Hydraulic Transmission. Automation of Electric Power Systems. 2009, vol. 33, no. 7, pp. 70—74.
  19. Berend G., van der Wall, Richard H. Analysis Methodology for 3C-PIV Data of Rotary Wing Vortices. Experiments in Fluids. 2006, vol. 40, no. 5, pp. 798—812. DOI: http://dx.doi.org/10.1007/s00348-006-0117-x.
  20. Badie R., Jonker J.B., Van Den Braembussche R.A. Finite Element Calculations and Experimental Verification of the Unsteady Potential Flow in a Centrifugal Volute Pump. International Journal for Numerical Methods in Fluids, vol. 19 (12), pp. 1083—1102. DOI: http://dx.doi.org/10.1002/fld.1650191203.

Download

Results 1 - 1 of 1