DATABASE MODEL FORMATION FOR IMPROVING THE ORGANIZATIONAL AND TECHNOLOGICAL RELIABILITY OF MONOLITHIC CONSTRUCTION

Vestnik MGSU 9/2017 Volume 12
  • Bolotova Alina Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Assistant, Department of Information Systems, Technology and Automation in Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 1061-1069

This article describes the scientific model information database of defects and irregularities identified in the organization of work in monolithic construction. Monolithic construction is a production system that consists of a number of random events. For each event a significant number of random factors are affected. The author examines and analyzes the characteristics of the technical failures that affect the organizational and technological reliability of building. Use of information technology makes it possible to calculate various indicators of operational efficiency of the process of detection and elimination of defects and failures of the production system. An important criterion in the process of sustainable development is the organizational and technological reliability (OTR), which describes the capabilities of the system to achieve the goal. The author generalized and systematized the available data. The author concludes that it is necessary to develop such organizational and technological solutions that will perform the work in a timely manner, with the required quality, without prejudice to the OTR of monolithic construction. Topicality of the article is due to the need in analysis of the organization of construction works and evaluation of the system of building control in the construction of monolithic reinforced concrete structures, with the aim of preventing the emergence of potential defects and irregularities in monolithic construction. Specialists in the field of risk analysis and assessment, experts and insurance companies, and organizations conducting the assessment can use the technique. Subject: organizational and technological reliability as a criterion for the quality of organization of monolithic construction, which affects the duration of work. Analysis of the interrelations between the index of OTR and technological defects and deviations in the production process by forming a database model has not been studied in detail until now. Materials and methods: for developing a technique for increasing the OTR, a general description of the object, its purpose and functions are presented. The indicators of the quality of the object and the characteristics affecting it are formed into an information database. Further, the parameters of factors and the range of their changes at which the normal functioning of the object is ensured are established. Results: using the method of expert assessments, the influence of the occurrence of certain undesirable events (failures) was quantified and the impact of these events on the achievement of the project objectives (duration of construction, cost, project quality) was assessed. The results of the analysis allow us to quickly assess the criticality of the violations identified, perform their ranking, and make corrective actions in the organization of production. The information presented in the database helps to quickly find the optimal technological solution that positively affects the time-saving. Conclusions: conducted analysis led to the conclusion that it is desirable to use the characteristics of the OTR of monolithic construction for the purposes of improving the quality of production processes and provided the information and the scientific basis necessary for improving the organization of production in civil engineering.

DOI: 10.22227/1997-0935.2017.9.1061-1069

Download

Method for determining the duration of construction basing on evolutionary modeling taking into account random organizational expectations

Vestnik MGSU 10/2016
  • Kurchenko Natal’ya Sergeevna - Bryansk State Technological University of Engineering (BSTU) Candidate of Technical Sciences, Associate Professor, Department of Construction Operations, Bryansk State Technological University of Engineering (BSTU), 3 prospekt Stanke Dimitrova, Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Alekseytsev Anatoliy Viktorovich - Bryansk State Technological University of Engineering (BSTU) Candidate of Technical Sciences, Associate Professor, Department of Construction Operations, Bryansk State Technological University of Engineering (BSTU), 3 prospekt Stanke Dimitrova, Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Galkin Sergey Sergeevich - Bryansk State Technological University of Engineering (BSTU) Master Student, Department of Construction Operations, Bryansk State Technological University of Engineering (BSTU), 3 prospekt Stanke Dimitrova, Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 120-130

One of the problems of construction planning is failure to meet time constraints and increase of workflow duration. In the recent years informational technologies are efficiently used to solve the problem of estimation of construction period. The issue of optimal estimate of the duration of construction, taking into account the possible organizational expectations is considered in the article. In order to solve this problem the iteration scheme of evolutionary modeling, in which random values of organizational expectations are used as variable parameters is developed. Adjustable genetic operators are used to improve the efficiency of the search for solutions. The reliability of the proposed approach is illustrated by an example of formation of construction schedules of monolithic foundations for buildings, taking into account possible disruptions of supply of concrete and reinforcement cages. Application of the presented methodology enables automated acquisition of several alternative scheduling of construction in accordance with standard or directive duration. Application of this computational procedure has the prospects of taking into account of construction downtime due to weather, accidents related to construction machinery breakdowns or local emergency collapses of the structures being erected.

DOI: 10.22227/1997-0935.2016.10.120-130

Download

Results 1 - 2 of 2