HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Operational analysis of the tailings bund wall drainage system at mirny ore mining and processing enterprise

Vestnik MGSU 12/2016
  • Aniskin Nikolay Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Engineering, Professor, Director of Institute of Hydrotechnical and Energy Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Malakhanov Vyacheslav Vasilyevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Engineering, Associate Professor of Hydraulics and Hydraulic Engineering Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Antonov Anton Sergeevich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student of Department of Hydraulics and Hydrotechnical engineering, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 91-102

Issues of environmental safety of tailings of ore mining and processing enterprises are considered; parameters of drainage of bund walls are of great significance for the environmental safety. Description of the bund wall of Mirny ore mining and processing enterprise and the tailings filling layouts are given. Results of field observation and model study of the tailings bund wall drainage system at Mirny ore mining and processing enterprise are presented. The drainage system rebuilding project analysis was performed. Proposals for its improvement were set forward.

DOI: 10.22227/1997-0935.2016.12.91-102

Download

LOGICAL-PROBABILISTIC METHOD IN ASSESSING THE RELIABILITY OF WATERPROOFING SYSTEMS OF UNDERGROUND PARTS OF BUILDINGS AND STRUCTURES

Vestnik MGSU 6/2018 Volume 13
  • Sokova Serafima Dmitrievna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Housing and Communal Services, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Smirnova Nadezhda Vital’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate, Department of Housing and Communal Services, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Smirnov Andrey Vyacheslavovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate, Department of Housing and Communal Services, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 748-755

Subject: the article considers one of the possible solutions to the problem of choosing the optimal waterproofing system for underground parts of buildings and structures using logical-probabilistic method. Selection of reliable hydro insulation of underground structures is a complex multi-task, and for successful functioning of the insulation it is necessary to focus on the systematic approach upon its creation. When choosing a waterproofing system, it is necessary to solve a multi-task and account for the specifics and status of a specific object, hydrogeological conditions, the depth of the structures, acting loads, the quality of construction works, etc. Apriori neglect of these factors and the lack of a systematic approach in the selection of hydro insulation system lead to accelerated wear and failure of structures. During operation as the main stage of life cycle of the building, the waterproofing of underground load-bearing frames of constructions is exposed to several rather difficult conditions. Hence, to avoid frequent overhaul, they should be chosen with the increased operational properties. The irregular choice of the protective coating leads to the accelerated wear and failure of the design. Objective assessment of the right choice of protective materials for an underground waterproofing and also selection of the most reliable and long-lived materials, especially for the bases, is a relevant task. The scientific novelty of this work consists in theoretical justification and the proof of a possibility of objective assessment of the choice of long-lived protection of designs of an underground part of buildings with the use of a logical-probabilistic method. Criteria of operational assessment of optimum long-lived materials are established and also the model of a tree of failures for different types of original materials of organic and mineral structure is proposed: bituminous, bituminous and polymeric, elastomeric, thermoplastic, clay, cement. Research objectives: choose an effective and durable hydro insulation system for underground structures of buildings under certain conditions of their operation using mathematical models and tools. Materials and methods: the “wall-foundation plate” system is considered which includes waterproofing membrane, waterproofing key, a repair mix, fillet, foundation mat, cast in-situ reinforced concrete, drainage geocomposite. We have applied logical-probabilistic method, the idea of which is the description of possible ways of functioning of the system by means of mathematical logic and the determination of its operability with the help of probability theory. Results: logical-probabilistic method allows us to analyze alternative options for creating waterproofing system by means of description of the possible ways of functioning of the variants being analyzed with the help of mathematical logic and determine the probability of their operability, based on which the optimal system that meets the requirements can be selected. A lot of factors were considered including the specificity and a status of a specific facility, hydrogeological conditions, depth of structures, acting loads, the quality of construction and installation works, etc. Conclusions: for achievement of the goal of the research, a set of factors including specificity and a condition of a specific facility, hydrogeological conditions, depth of structures, acting loads, quality of installation and construction works, etc. was considered. Taking into account the specified factors and systematic approach when choosing the waterproofing system proved its effectiveness by use of a logical-probabilistic method as the most accurate and reliable mathematical method.

DOI: 10.22227/1997-0935.2018.6.748-755

Download

Results 1 - 2 of 2