DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Bearing capacity of corroded bending reinforced concrete element

Vestnik MGSU 7/2014
  • Larionov Evgeniy Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Advanced Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow,129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 51-63

Many Russian and foreign scientists studied in their works bearing capacity of reinforced concrete elements. The principal difference of the presented approaches from the traditional ones is that they lack the necessity of artificial sizing as improbable for simultaneous getting preset limit values of corresponding parameters. In our paper we evaluated the bending moment, giving rise to limit stress strain behavior of corroded reinforced concrete beams with corroded concrete and tensile reinforcement. In order to reduce and simplify calculations we consider single reinforcement and ignore tensile reinforcement resistance, and in order to emphasize the idea of the approach we assume noncorrosiveness. The results of concrete stress strain state analysis are more reliable.

DOI: 10.22227/1997-0935.2014.7.51-63

References
  1. Guzeev E.A., Mutin A.A., Basova L.N. Deformativnost' i treshchinostoykost' szhatykh armirovannykh elementov pri dlitel'nom nagruzhenii i deystvii zhidkikh sred [Deformability and Crack Resistance of Compressed Reinforced Elements with Long-Term Loading in Fluids]. Moscow, Stroyizdat Publ., 1984, 34 p.
  2. Komokhov P.P., Latynov V.I., Latynova M.V. Dolgovechnost' betona i zhelezobetona [Longevity of Concrete and Reinforced Concrete]. Ufa, Belaya reka Publ., 1998, 216 p.
  3. Bondarenko V.M. Nekotorye fundamental'nye voprosy razvitiya teorii zhelezobetona [Some Fundamental Questions of Reinforced Concrete Theory Development]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2010, no. 1, pp. 20—34.
  4. Bondarenko V.M., Larionov E.A., Bashkatova M.E. Otsenka prochnosti izgibaemogo zhelezobetonnogo elementa [Evaluation of Bending Reinforced Element Strength] Izvestiya OrelGTU [News of Orel State Technological University]. 2007, no. 2 (14), pp. 25—28.
  5. Bondarenko V.M., Larionov E.A. Printsip nalozheniya deformatsiy pri strukturnykh povrezhdeniyakh elementov konstruktsiy [Deformation Superposition Frequency in Structural Damages of Construction Elements]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Buildings]. 2010, no. 1, pp. 16—22.
  6. Aleksandrov A.B., Travush V.I., Matveev A.B. O raschete sterzhnevykh konstruktsiy na ustoychivost' [Collapse Method of Structural Design for Frame Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2002, no. 3, pp. 16—19.
  7. Uliti V.V. Deformatsionnyy kriteriy pri analize ustoychivosti i prodol'nogo izgiba v usloviyakh fizicheskoy nelineynosti [Deformation Criterion in Rigidity and Buckling Analysis in Physical Nonlinearity]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Mechanics and Structural Analysis]. 2012, no. 1, pp. 34—39.
  8. Beddar M. Fiber Reinforced Concrete: Past, Present and Future. Beton i zhelezobeton — puti razvitiya: nauchnye trudy 2-y Vserossiyskoy (Mezhdunarodnoy) konferentsii po betonu i zhelezobetonu [Concrete and Reinforced Concrete — Development Path: Scientific Works of the 2nd All-Russian (International) Conference on Concrete and Reinforced Concrete]. Ìoscow, Dipak Publ., 2005, vol. 3, pp. 228—234.
  9. Hillerborg A., Modar M., Peterson P. Analysis of Crack Formation and Crack Grows in Concrete by Means of Fracture Mechanics and Finite Elements. Cem. and Concr. Res. 1976, no. 6, pp. 773—781.
  10. Pekau Î.A., Syamal Ð.Ê. Non-Linear Torsional Coupling in Symmetric Structures. J. Sound and Vibration. 1984, vol. 94, no. l, pp. 1—18.
  11. Kilar V., Fajfar P. Simple Push-Over Analysis of Asymmetric Buildings. Journal of Earthquake Engineering and Structural Dynamics. 1997, no. 26, pp. 233—249. DOI: http://dx.doi.org/10.1002/(SICI)1096-9845(199702)26:2<233::AIDEQE641>3.0.CO;2-A
  12. Tso W.K. Induced Torsional Oscillations in Symmetrical Structures. Journal of Earthquake Engineering and Structural Dynamics. 1975, pp. 337—346. DOI: http://dx.doi.org/10.1002/eqe.4290030404.
  13. Bondarenko V.M., Ivanov A.I., Piskunov A.V. Opredelenie korroziynykh poter' nesushchey sposobnosti szhatykh zhelezobetonnykh elementov pri reshenii po SNiP [Defining Corrosion Damages of Bearing Capacity of Compressed Reinforced Concrete Elements According to Construction Norms and Rules]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2011, no. 5, pp. 26—28.
  14. Bondarenko V.M., Kolchunov V.I., Klyueva N.V. Eshche raz o konstruktivnoy bezopasnosti i zhivuchesti zdaniy [Once Again on Constructive Building Security and Survivability]. RAASN. Vestnik otdeleniya stroitel'nykh nauk. Yubileynyy vypusk [Russian Academy of Architecture and Construction Sciences. Reports of Structural Sciences Department. Anniversary Issue]. 2007, no. 11, pp. 81—86.
  15. Bondarenko V.M. O vliyanii korrozionnykh povrezhdeniy na dissipatsiyu energii pri silovom deformirovanii betona [Corrosive Effect on Energy Dissipation in Force Deformation of Concrete]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2008, no. 6, pp. 24—28.

Download

QUALITATIVE ANALYSIS OF EXTREMAL PROBLEMS IN ARBITRARY DOMAINS

Vestnik MGSU 3/2012
  • Samokhin Mikhail Vasilevich - Moscow State University of Civil Engineering (MSUCE) 8 (499) 183-29-38, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 228 - 232

The author explores linear extremal problems of classes of bounded analytic functions and generalized classes discovered by V.I. Smirnov; the author also considers the representability of extremals by means of Cauchy-Stieltjes integral.
The author considers the problems concerning where B is either a unit sphere in the (D) space or one of the classes , p>1. He shows the possibility of the results concerning the characteristic of extreme functions, their uniqueness, the possilble presentation of the functions from the classes and with the use of the Cauchy-Stieltjes integrals in the component of the D\ suppµ set and the boundary behavior of an extreme function from the (D) class.
One should note that the given mathematical system can be implemented for making decisions in the field of construction engineering and structural analysis, it can provide research assistants and engineers with the background necessary for developing sound solutions and rational proposals.

DOI: 10.22227/1997-0935.2012.3.228 - 232

References
  1. Khavinson S.Ya. Ob analiticheskoy emkosti mnozhestva, sovmestnoy netrivial’nosti razlichnykh klassov analiticheskikh funktsiy i lemme Shvartsa v proizvol’nykh oblastyakh [About the Analytic Capacity of the Set, Joint Nontriviality of Different Classes of Analytic Functions and Schwartz Lemma in Arbitrary Domains]. Matematicheskiy Sbornik [Mathematical Collection], 1961, no. 54.
  2. Khavinson S.Ya. Ekstremal’nye zadachi dlya nekotorykh klassov analiticheskikh funktsiy v konechnosvyaznykh oblastyakh [Extremal Problems for Some Classes of Analytic Functions in Finitely Connected Domains]. Matematicheskiy Sbornik [Mathematical Collection], 1955, no. 36.

Download

Results 1 - 2 of 2