STUDYING DEFORMATIONS OF AN FLAT TRUSS STRUCTURE STATICALLY INDETERMINATED EXTERNALLY
Pages 869-875
A flat statically determinate parallel-chord truss structure has a cross-shaped grid and rests upon two rigid pin-bearing supports. Loads in bars are determined in a symbol form using the method of joint isolation by the computer mathematics Maple system. The peculiarity of the considered truss structure is its external static indeterminacy. In fact, all efforts and reactions of supports can be determined from the equilibrium conditions. But the inconvenience is necessary to consider the equilibrium of all the nodes of the truss. The Ritter cross-section method is not applicable to this truss structure. The sections that cut the truss into two parts and pass through the three rods, here exist only for several rods of the extreme panels. The purpose of this paper is to calculate a truss structure with a different number of panels in analytical and numerical form. Finite element calculation method with the use of software LISA 8.0 is applied. It’s noted that a truss structure is kinetically changeable when the number of spans is odd. The corresponding plan of probable velocities is given. In order to receive analytic dependence of deflection on the span number, the induction method and Maxwell-Moor formula has been applied. The operators of the compilation and solution of recurrence equations are involved in determining the general terms of the coefficient sequences. The formulas for calculation of loads in the most compressed bars of a truss structure were received.
DOI: 10.22227/1997-0935.2017.8.869-875