TECHNOLOGY OF CONSTRUCTION PROCEDURES. MECHANISMS AND EQUIPMENT

INFLAMMABLENESS AND SMOKE-GENERATING ABILITY OF POLYMER COMPOSITE MATERIALS

Vestnik MGSU 8/2017 Volume 12
  • Ushkov Valentin Anatolyevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Head of the Research Laboratory of Modern Composite Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 897-903

Possessing valuable operational properties, the vast majority of polymer composite materials (PCM) tend to ignite and spread the flame, the emergence of dangerous fire factors, leading to loss of life and property damage. The present article is concerned with influence of chemical nature and content of mineral fillers, phosphate plasticizers, bromine-containing fire-retardant agents, and dicyclopentadienyliron (ferrocene) derivatives on thermal fastness, flammability and smoke-generating ability of polymer composite materials. It’s shown that the main parameter defining the influence of mineral fillers on flammability of polymer composite materials is the specific amount of heat absorbed by fillers. It’s proved that bromine-containing fire-retardant agents increase smoke-generating ability of materials and allow obtaining low-flammable polymer composites with smoke-developed index not exceeding 500 m2/kg and high performance factors. The rational use of mineral fillers, bromine-containing fire-retardant agents, and ferrocene derivatives makes it possible to develop PCMs with reduced fire danger and high performance indicators.

DOI: 10.22227/1997-0935.2017.8.897-903

Download

Fire hazard of phosphorus-containing hard casting polyurethane foams

Vestnik MGSU 12/2018 Volume 13
  • Ushkov Valentin A. - Moscow State University of Civil Engineering (National Research University) (MGSU) , Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Sokoreva Evgeniya V. - Moscow State University of Civil Engineering (National Research University) (MGSU) , Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Goryunova Anna V. - Moscow State University of Civil Engineering (National Research University) (MGSU) , Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Demjanenko Stanislav A. - Moscow State University of Civil Engineering (National Research University) (MGSU) , Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 1524-1532

Introduction. Fire-safe rigid filling polyurethane foams (PUF), meant for low-temperature thermal insulation of pipelines and technological equipment were developed. The effect of concentration of oxyethylated tetraalkylphosphonate pentaerythritol (phostetrol-1) on technological, physico-mechanical and thermal properties, contents of pyrolysis products and main fire hazard indicators of PUFs was explored. The effect of chemical nature and metal compounds concentration of variable valence on fume-generation ability of phosphorous-containing PUFs was examined. Main technological and physico-mechanical properties and fire hazard indicators of developed styrofoams are provided. Materials and methods. Rigid filling PUFs were obtained on the basis of simple oxyethylated polyols and polyisocyanate. Phostetrol-1 was used as a reactive phosphorous-containing compound. As a foaming and hardening catalyst of developed PUF’s a nitrogen-containing polyol (mark Lapromol 294) and dimethylethanolamine was used, and as a foaming agent - mixture of freon - 11 and water. Different metal compounds of variable valence were used to reduce fume-generation ability and toxicity of pyrolysis products of rigid phosphorous-containing PUFs. Thermal properties of examined PUFs were studied with the help of thermoanalytical complex Du PONT 9000. Main technological and physico-mechanical properties and fire hazard indicators of styrofoams were determined under existing GOSTs. Results. The effect of phostetrol-1 concentration in polyester compound on main technological and physico-mechanical properties, contents of pyrolysis products and main fire hazard indicators of rigid filling PUFs was established. It is shown that to obtain moderately flammable PUFs the phosphorous concentration in styrofoam must exceed 2.5 mass. %. The correlation between low-scale evaluation methods of flammability of rigid PUFs was found. The effect of phosphorous concentration on fume-generation ability and contents of pyrolysis products of rigid PUFs was found. The effect of chemical nature and metal compounds concentration of variable valence on fume-generation ability of phosphorous-containing PUFs was examined. It is shown that effective decrease of fume-generation ability and toxicity of pyrolysis products of moderately flammable PUFs occurs when Cu2O or chrome spinels are introduced to the polyester compound. Conclusions. As a result of conducted research it was established that the combined use of phostetrol-1, Cu2O and chrome spinels makes it possible to obtain rigid fire-safe PUFs with high physico-mechanical properties. Fire-safe rigid filling PUFs, developed with the use of raw native materials, are recommended to be used for low-temperature thermal insulation of pipelines and technological equipment.

DOI: 10.22227/1997-0935.2018.12.1524-1532

Download

Results 1 - 2 of 2