POROUS-MASTIC ASPHALT-CONCRETE MIXTURES AND THEIR UTILIZATION HISTORY

Vestnik MGSU 11/2017 Volume 12
  • Khudokonenko Anton Aleksandrovich - Architectural and Construction Academy of Don State Technical University (ASA DSTU) Master, Architectural and Construction Academy of Don State Technical University (ASA DSTU), 1 Gagarinа square, Rostov-on-Don, 344000, Russian Federation.
  • Chernov Sergey Anatol’evich - Architectural and Construction Academy of Don State Technical University (ASA DSTU) Candidate of Technical Sciences, Associate Professor, Architectural and Construction Academy of Don State Technical University (ASA DSTU), 1 Gagarinа square, Rostov-on-Don, 344000, Russian Federation.

Pages 1284-1288

Subject: a rapid increase in the traffic intensity and freight traffic on motor roads leads to premature destruction of road surfaces. At the same time, the actual service life of asphalt-concrete pavements rarely exceeds 4-5 years and in most cases is only 2-3 years. Most intensively defects and fractures appear on asphalt-concrete pavements in the early spring. Nowadays the overhaul intervals for the road surface coverings are significantly lower than those given by the regulatory requirements. One of the main reasons for this phenomenon is the use of obsolete technologies based on traditional materials whose properties are inadequate to resist stresses and deformations arising in the coating. This is especially evident in the climatic conditions of the south of the European part of Russia, where the upper layers of the roadway experience a much wider range of temperatures. Tighter requirements for the initial road-building materials and timely repair of the coatings allow us to increase the service life of motor roads. Research objectives: the aim of the study is to develop a new type of asphalt-concrete, such as porous-mastic one. Materials and methods: the work was carried out based on observations and published sources, a method of theoretical study and analysis. Results: the domestic and foreign experience of using the given asphalt concrete for the top layer of the coating was considered. The technology of preparation and laying of a porous-mastic asphalt-concrete mixture is presented and its advantages and disadvantages are shown. Conclusions: increasing the longevity of highways is an important and urgent task and it can be solved, in particular, due to the wide use of new technologies and non-traditional building materials that allow us to improve the quality of asphalt-concrete pavement and prolong its overhaul intervals.

DOI: 10.22227/1997-0935.2017.11.1284-1288

Download

Epoxy antifriction wollastonite-filled materials

Vestnik MGSU 3/2019 Volume 14
  • Gotlib Elena M. - Kazan National Research Technological University (KNRTU) Doctor of Technical Sciences, Professor, Professor Technology of synthetic rubber, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
  • Khasanova Аlmira R. - Kazan National Research Technological University (KNRTU) assistant of the Department of materials science, welding and industrial safety, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
  • Galimov Engel R. - Kazan National Research Technological University (KNRTU) Doctor of Technical Sciences, Professor, Head of the department of materials science, welding and industrial safety, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
  • Sokolova Аlla G. - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor of foreign languages and professional languages Department, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 311-321

Introduction. Domestic mineral natural-origin filler ‘wollastonite’, also known as calcium methyl silicate, is widely used as a base for wear-resisting epoxy antifriction materials. Due to anisodiametric shape of its particles, wollastonite functions as a micro reinforcement fibre enhancing adhesion strength and wear resistance of epoxy compositions, improving their antifriction properties, especially when organomodifying by quaternary ammonium salts. In this regard, the investigation of the impact of chemical composition of such surfactants as quaternary ammonium salts on the properties of epoxy compound materials presents utmost interest for researchers developing low-friction materials. Materials and methods. Epoxy diane resin ED-20 was hardened with aminoalkylphenol AF-2. Content of epoxy hardener was determined by equimolar ratio of epoxy groups to amine groups. Domestic wollastonite of the grade Miwoll 10-97 was used as filler, particle length to the diameter correlated as 15:1. The wollastonite surface was activated with surfactants belonging to domestically produced quaternary ammonium salts. Wear resistance of specimens was tested by means of the vertical optical caliper IZV-1. Friction coefficient was estimated with the assistance of the computer-automated frictional machine CSM Instruments Tribometer. Adhesion strength of glue joint was determined as per GOST 28840-90 standard. Two bars of sheet aluminium were used as glued surfaces as per GOST 14759-69 standard. Results. Reduction of wear of epoxy coatings when modified with micro reinforcing wollastonite can be explained by the increase of cross-linking degree of the polymer. The length of alkyl radical of quaternary ammonium salts used for wollastonite surface activation affects the intervals between the epoxy links. As the quaternary ammonium salt chain length is growing, wear of epoxy materials is reducing. Introduction of the wollastonite containing metallic oxides in the epoxy composites increases wear resistance and adhesion strength and reduces coating friction coefficients. Conclusions. Hardened with the AF-2 and filled with the wollastonite of the Miwoll 10-97 grade, the epoxy compound materials have enhanced wear resistance and adhesion strength and lower friction coefficient. The best result is observed when applying wollastonite modified with a surfactant belonging to the class of quaternary ammonium salts. The wollastonite can be used for practical purposes as a perspective reinforcing agent for epoxy materials with improved wear resistance, enhanced adhesion to metals and reduced friction coefficient.

DOI: 10.22227/1997-0935.2019.3.311-321

Download

Results 1 - 2 of 2