Construction System Design and Layout Planning. Mechanical Equipment Challenges in Construction

Thermal regime of enclosing structures in high-rise buildings

Vestnik MGSU 8/2018 Volume 13
  • Musorina Tatyana A. - Peter the Great St. Petersburg Polytechnic University (SPbPU) postgraduate student, Hydraulics and Strength Department, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation.
  • Gamayunova Ol’ga S. - Peter the Great St. Petersburg Polytechnic University (SPbPU) Senior lecturer, Department of Construction of Unique Buildings and Structures, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation.
  • Petrichenko Mikhail R. - Peter the Great St. Petersburg Polytechnic University (SPbPU) Doctor of Technical Sciences, Professor, Head of the Hydraulics and Strength Department, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation.

Pages 935-943

Subject of research: the main heat loss occurs through the building fence. In the paper, the object of research is enclosing structures with different thermal conductivity. The problem of moisture accumulation in the wall is quite relevant. One of the main problems in construction is saving on building materials and improper design of building envelope. This in turn leads to a violation of the heat and humidity regime in the wall. This paper presents one of the methods to address this issue. Purpose: description of heat and humidity conditions in the wall fence of high-rise buildings. It is also necessary to analyze the relationship between the thermophysical characteristics. Materials and methods: the temperature distribution in the layers will be analyzed on the basis of the structure consisting of 10 layers; the layer thickness is 0.05 m. Materials with different thermal conductivity were used. Each subsequent layer differed in thermal conductivity from the previous one by 0.01. Next, these layers are mixed. The calculation of the humidity regime includes finding the temperature distribution along the thickness of the fence at a given temperature of the outside air. The quality factor of the temperature distribution is the maximum average temperature. This research are conducted in the field of energy efficiency. Results: the higher the average wall temperature, the lower the air temperature differs from the wall temperature. In addition, the higher the average temperature of the wall, the drier the surface inside the wall. However, moisture accumulates on the surface inside the room. The working capacity of multilayer enclosing structures is determined by the temperature distribution and distribution of moisture in the layers. Conclusions: moisture movement through the fence is due to the difference in the partial pressure of water vapor contained in the indoor and outdoor air. A layer with minimal thermal conductivity should be located on the outer surface of the wall in a multi-storey building. The maximum change in the amplitude of temperature fluctuations is observed in the layer adjacent to the surface by periodic thermal effects. It is also taken into account that the process of heat absorption has a great influence on the temperature change in the thickness of the wall fence to the greatest extent within the layer of sharp fluctuations (outer layer). The Central part of the wall (bearing layer) will be the driest. These calculations are satisfied with the design of the ventilated facade.

DOI: 10.22227/1997-0935.2018.8.935-943

Download

Results 1 - 1 of 1