TRANSPORTATION SYSTEMS

METHODOLOGY AND ALGORITHM OF OPTIMIZATION OF THE NEED OF SETTLEMENTS FOR TECHNICAL INSPECTION LINES FOR VEHICLES

Vestnik MGSU 6/2016
  • Kanen Mahmoud Fadlallah Hador - Ivanovo State Polytechnic University (IVGPU) postgraduate student, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Maslennikov Valeriy Aleksandrovich - Ivanovo State Polytechnic University (IVGPU) Candidate of Technical Sciences, Associate Professor, chair, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation.

Pages 107-117

The current methods of predicting the demand of the community for the lines of technical inspection of vehicles do not fully take into account the probabilistic and statistical nature of the complaints of car owners. This results in significant mistakes in the determination of the number of such lines, accompanied by insufficient rhythm of their operation. The design errors related to the complexity of accurate account for calendar fluctuations of the number of appeals can be partially or completely eliminated by using mathematical apparatus of the queuing theory. In this case, the complex technical system is considered as an open multi-channel queuing system with limited queue length. The received flows and serviced requests are considered to be the simplest. From a practical point of view, the replacement of one type of computational model by the other allows ensuring a more sustainable mode of calculating operations using the computer. The paper also provides a calculation expression for defining the lower and upper confidence limits of the dispersion of the average values of the number of arrivals of vehicles at the technical inspection that allows setting the interval of uncertainty for searching the optimal solution.

DOI: 10.22227/1997-0935.2016.6.107-117

References
  1. Golovin S.F. Tekhnicheskiy servis transportnykh mashin i oborudovaniya [Technical Service of Transport Vehicles and Equipment]. Moscow, Al’fa-M: INFRA-M Publ., 2008, 284 p. (In Russian)
  2. Masuev M.A. Proektirovanie predpriyatiy avtomobil’nogo transporta: uchebnoe posobie dlya studentov vysshikh uchebnykh zavedeniy [Designing of the Enterprises of Motor Transport]. Moscow, Akademiya Publ., 2007, 224 p. (In Russian)
  3. Napol’skiy G.M. Tekhnologicheskoe proektirovanie avtotransportnykh predpriyatiy i stantsiy tekhnicheskogo obsluzhivaniya [Technological Design of Transport Companies and Service Stations]. 2nd edition, revised and enlarged. Moscow, Transport Publ., 1993, 271 p. (In Russian)
  4. Kanen M.G.F., Maslennikov V.A. Povyshenie effektivnosti protsessa diagnostirovaniya avtomobiley [Improving the Efficiency of Diagnosing Process of Automobiles]. Informatsionnaya sreda VUZA : materialy XIX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [University Infomedia. 18st International Scientific and Technical Conference]. Ivanovo, IVGPU Publ., 2012, pp. 352—354. (In Russian)
  5. Kanen M.G.F., Maslennikov V.A., Usipbaev U.A. Obosnovanie potrebnosti v liniyakh tekhnicheskogo osmotra [Rationale for Technical Inspection Lines]. Informatsionnaya sreda VUZA : materialy XXI Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [University Infomedia. 21st International Scientific and Technical Conference]. Ivanovo, IVGPU Publ., 2014, pp. 338—340. (In Russian)
  6. Kanen M.G.F., Maslennikov V.A., Usipbaev U.A., Tulenov A.T., Dzhunisbekov A.S. Opredelenie normativov potrebnosti v pukntakh tekhnicheskogo osmotra transportnykh sredstv [Defining the Standards for the Necessity in Technical Inspection Stations of Vehicles]. Auezovskie chteniya-12 : trudy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the International Scientific and Practical Conference “Auezov Readings-12”]. Shymkent, YuKGU im. Auezova, 2014, vol. 1. Rol’ regional’nogo universiteta v razvitii innovatsionnykh napravleniy nauki, obrazovaniya i kul’tury [The Role of Regional University in the Development of Innovative Areas of Science, Education and Culture]. Pp. 213—215. (In Russian)
  7. Kanen M.H.F., Maslennikov V.A. Obosnovanie potrebnosti naselennykh punktov v liniyakh tekhnicheskogo osmotra avtomototransportnykh sredstv [Rationale for the Necessity of Technical Inspection Lines for Motor Vehicles in Residential Areas]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2016, no. 1, pp. 161—169. (In Russian)
  8. Danko P.E., Popov A.G., Kozhevnikova T.Ya. Proektirovanie predpriyatiy avtomobil’nogo transporta [Design of Road Transport Enterprises]. Moscow, Akademiya Publ., 2007, 224 p. (In Russian)
  9. Venttsel’ E.S., Ovcharov L.A. Teoriya veroyatnostey i ee inzhenernye prilozheniya [Probability Theory and its Engineering Applications]. Moscow, Nauka Publ., 1988, 480 p. (In Russian)
  10. Taylor J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books; 2nd edition, 1996, 327 p.
  11. Johnson J.L., Leone F.C. Statistics and Experimental Design in Engineering and the Physical Sciences. 2nd edition. John Wiley & Sons, New York-London-Sydney-Toronto, 1977, 606 p. DOI: http://dx.doi.org/10.1002/bimj.4710200314.
  12. Kuznetsov E.S., Boldin A.P., Vlasov V.M., etc. Tekhnicheskaya ekspluatatsiya avtomobiley [Technical Maintenance of Vehicles]. 4th edition, revised and enlarged. Moscow, Nauka Publ., 2004, 534 p. (In Russian)
  13. Soldovskiy V.I. Proektirovanie proizvodstvennykh protsessov v sel’skom khozyaystve na osnove strukturno-tekhnologicheskikh skhem [Design of Production Processes in Agriculture on the Basis of Structural and Technological Schemes]. Kostroma, KGSKhA Publ., 2000, 168 p. (In Russian)
  14. Venttsel’ E.S. Issledovanie operatsiy: zadachi, printsipy, metodologiya: uchebnoe posobie [Operations Research: Objectives, Principles, Methodology. Textbook]. 3rd edition, stereotype. Moscow, Drofa Publ., 2004, 206 p. (In Russian)
  15. Romantsev V.V. Analiticheskie modeli sistem massovogo obsluzhivaniya [Analytical Models of Queuing Systems]. Saint-Petersburg, LETI Publ., 1998, 64 p. (In Russian)
  16. Chernov V.P., Ivanovskiy V.B. Matematika dlya ekonomistov [Mathematics for Economists]. In 6 volumes. Moscow, Infra-M Publ., 2000, vol. 6: Teoriya massovogo obsluzhivaniya [Queuing Theory]. 156 p. (In Russian)
  17. Samarov K.L. Elementy teorii massovogo obsluzhivaniya [Elements of Queuing Theory]. Moscow, OOO «Rezol’venta» Publ., 2009, 18 p. (In Russian)
  18. Ostreykovskiy V.A. Teoriya nadezhnosti [Reliability Theory]. Moscow, Vysshaya shkola Publ., 2003, 462 p. (In Russian)
  19. Bezrukov A.L., Groshev A.M., Kravets V.N., Orlov L.N., Savinov B.V., Tikhomirov A.N., Tikhomirova O.B. Proverka tekhnicheskogo sostoyaniya transportnykh sredstv [Technical Condition Test of Vehicles]. Nizhniy Novgorod, NP «INSAT» Publ., 2009, 398 p. (In Russian)
  20. Kuznetsov E.S. Upravlenie tekhnicheskoy ekspluatatsii avtomobiley [Management of Technical Maintenance of Cars]. Moscow, Transport Publ., 1982, 224 p. (In Russian)
  21. Rodgard Runflats. Rodgard Runflat & Polymer Solutions. Available at: http://www.rodgard.com/runflats.htm. Date of access: 07.07.2014.
  22. Curtin K.M., McCall K.H., Qiu F. Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models. Netw. Spatial Econ. 2010, vol. 10, no. 1, pp. 125—145. DOI: http://dx.doi.org/10.1007/s11067-007-9035-6.
  23. Arinin I.N., Konovalov S.I., Bazhenov Yu.V. Tekhnicheskaya ekspluatatsiya avtomobiley: Upravlenie tekhnicheskoy gotovnost’yu podvizhnogo sostava [Technical Maintenance of Cars: Management of Technical Availability of Rolling Stock]. 2nd edition. Rostov-on-Don, Feniks Publ., 2007, 314 p. (In Russian)
  24. Service station. GNU Free Documentation License. Available at: http://knowledgerush.com/encyclopedia/Service_station. Date of access: 07.08.2015.
  25. MathWorks. Available at: www.mathworks.com. Date of access: 01.10.2013.
  26. Encyclopedia of Automotive Engineering. Wiley Online Library. Available at: http://onlinelibrary.wiley.com/book/10.1002/9781118354179. Date of access: 01.09.2015. DOI: http://dx.doi.org/10.1002/9781118354179.
  27. Robert Bosch GmbH. EU CO2 Fleet Target for Passenger Cars. 2009.
  28. A European Strategy for Clean and Energy Efficient Vehicles State of Play 2011 — Commission Staff working paper. SEC (2011) 1617 Final. Brussels, 14.12.2011, pp. 1—17.

Download

IDENTIFICATION OF OPTIMAL PARAMETERS OF REINFORCED CONCRETE STRUCTURES WITH ACCOUNT FOR THE PROBABILITY OF FAILURE

Vestnik MGSU 10/2012
  • Filimonova Ekaterina Aleksandrovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Re- inforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 128 - 133

The principal mission of structural design consists in the development of economical though reliable structures. Any safety-related improvements boost the cost of a structure, while any reduction of costs involves higher risks. The objective of any structural designer is to pinpoint the optimal structural parameters among the whole variety of solutions that fall within the range of the pre-set design requirements and minimal risks. Selection of the optimality criteria applicable to reinforced concrete structures is to be based on a set of requirements, including low costs, technological efficiency, safety and observance of limits imposed onto the expenditure of material resources and the workforce.
The author suggests splitting the aforementioned parameters into the two groups, namely, natural parameters and value-related parameters that are introduced to assess the costs of development, transportation, construction and operation of a structure, as well as the costs of its potential failure. The author proposes a new improved methodology for the identification of the above parameters that ensures optimal solutions to non-linear objective functions accompanied by non-linear restrictions that are critical to the design of reinforced concrete structures. Any structural failure may be interpreted as the bounce of a random process associated with the surplus bearing capacity into the negative domain. Monte Carlo numerical methods make it possible to assess these bounces into the unacc eptable domain.

DOI: 10.22227/1997-0935.2012.10.128 - 133

References
  1. Tamrazyan A.G. K otsenke riska chrezvychaynykh situatsiy po osnovnym priznakam ego proyavleniya na sooruzhenie [Concerning the Assessment of the Risk of Emergencies on the Basis of Their Principal Features Demonstrated by the Structure]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2001, no. 5, pp. 8—10.
  2. Pichugin S.F., Semko A.V., Makhin’ko A.V. K opredeleniyu koeffitsienta nadezhnosti po naznacheniyu s uchetom riskov v stroitel’stve [Identification of the Reliability Ratio with Account for Construction-related Risks]. Izv. vuzov. Stroitel’stvo. [News of Higher Education Institutions. Civil Engineering.] 2005, no. 11—12, pp. 105—109.
  3. Huang C., Kroplin B. Optimum Design of Composite Laminated Plates via a Multi-objective Function. International Journal of Mechanical Science. 1995, vol. 37, no. 3, pp. 317—326.
  4. Falso S.A., Afonso S.M.B., Vaz L.E. Analysis and Optimal Design of Plates and Shells under Dynamic Loads – II: Optimization. Structural and Multidisciplinary Optimization, 2004, vol. 27, no. 3, pð.197—209.
  5. Bezdelev V.V., Dmitrieva T.L. Ispol’zovanie mnogometodnoy strategii optimizatsii v proektirovanii stroitel’nykh konstruktsiy [Employment of the Multi-methodological Strategy for the Optimization in the Design of Building Structures]. Izv. vuzov. Stroitel’stvo. [News of Higher Education Institutions. Civil Engineering.] 2010, no. 2, pp. 90—95.
  6. Yarov V.A., Prasolenko E.V. Proektirovanie kruglykh monolitnykh plit perekrytiy ratsional’noy struktury s ispol’zovaniem topologicheskoy i parametricheskoy optimizatsii [Design of Circular In-situ Floor Slabs of Rational Structure through the Employment of Topological and Parametric Optimization]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Proceedings of Tomsk State University of Architecture and Civil Engineering]. 2011, no. 3, pp. 89—102.
  7. Tamrazyan A.G., Filimonova E.A. Metod poiska rezerva nesushchey sposobnosti zhelezobetonnykh plit perekrytiy [Methodology of Identification of the Surplus Bearing Capacity of Reinforced Concrete Floor Slabs]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 3, pp. 23—25.

Download

DETERMINATION AND VERIFICATION OF PARAMETERS OF THE SOFT SOIL MODEL WITH ACCOUNT FOR CREEP

Vestnik MGSU 6/2018 Volume 13
  • Ter-Martirosyan Armen Zavenovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor of the Department of Soil Mechanics and Geotechnics, Head of Research and Education Center «Geotechnics», Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Sidorov Vitaliy Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Professor, Department of Soil Mechanics and Geotechnics, Researcher at the Research and Education Center «Geotechnics», Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Ermoshina Lyubov’ Yur’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Engineer of Research and Education Center «Geotechnics», Moscow State University of Civil Engineering (National Research University) (MGSU), Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 697-708

Subject: a technique for optimizing parameters of the soft soil model with account for creep (soft Soil Creep model) using the PLAXIS 3D geotechnical software package is presented. The results of laboratory tests of soils are compared with the results of modeling in the software package, the process of optimizing the parameters obtained in the laboratory for use in software systems is described, and description of the process of testing the obtained parameters for adequacy (approximation to the behavior in the process of testing) is given. The obtained technique is relevant for application in geotechnical calculations. Research objectives: description of the technique for optimizing parameters of the soft soil model with creep taken into account using the PLAXIS 3D geotechnical software package; comparative analysis of the obtained results of laboratory tests of soils with simulation results in the software package. Materials and methods: when describing the technique for optimizing parameters of the soft soil model, taking into account the creep, numerical methods of solution were used. Laboratory studies of soils were carried out on certified equipment in accordance with the current set of regulations, and the numerical calculations were performed on a certified PLAXIS 3D software package. Results: the technique presented in the article on optimization of parameters of the soft soil model, taking into account the creep, allows us to estimate the degree of correctness of the soil massif behavior simulation in the software package relative to the behavior of the real soil in laboratory setup. This is necessary when this technique is used in geotechnical calculations, since it is very important for designers and analysists to know how well the soil behavior modeled with the software system can approximate the behavior of the soil during actual testing. Conclusions: the conducted comparative analysis and the proposed technique for optimizing parameters of the soft soil model with allowance for creep are obtained from the practical experience of works carried out for determining parameters of the described soil model and applying this model for geotechnical analysis of the stress-strain state of the bases of buildings and structures, being designed and under construction.

DOI: 10.22227/1997-0935.2018.6.697-708

Download

Results 21 - 23 of 23