Construction Material Engineering

Modifying epoxy polymers by cyclic carbonates of epoxidated plant oils

Vestnik MGSU 12/2018 Volume 13
  • Gotlib Еlena M - Kazan National Research Technological University (KNRTU) Doctor of Engineering, Professor, Professor of the chair of artificial rubber technology, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
  • Anh Nguyen - Kazan National Research Technological University (KNRTU) postgraduate student of the chair of artificial rubber technology, Kazan National Research Technological University (KNRTU), 68 Karl Marx st., Kazan, 420015, Russian Federation.
  • Sokolova Аlla G. - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor of foreign languages and professional languages Department, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 1491-1498

Introduction. Application of renewable raw materials for manufacturing non-toxic components of polymer materials is of great practical interest. Cyclic carbonates on the base of epoxidated rubber tree oil could be seen as a promising alternative of fossil fuels. The ability of compounds containing cyclic carbonates to interact with primary amines and to form urethane and hydroxyl groups makes them rather efficient modifiers of amine-toughened epoxy compounds on the base of low-molecular diane oligomers. Introduction of cyclic carbonates enhances impact behavior of epoxy materials as well as their adhesion and strength properties. Materials and methods. Epoxy resin ED-20 was used for the research, as a cross-linking agent for cold toughening aminealkylphenol AF-2 was used; cyclic carbonates of epoxidated soy oils and rubber tree oil were applied as modifiers. Adhesional strength of bond joints has been determined in compliance with the GOST 28840-90, abrasive hardness of epoxy compound samples has been tested by the vertical optical caliper IZV-1. Results. When applying two-stage technology for obtaining epoxy cyclic carbonate compounds, there has been appeared a significant increase of adhesion to aluminum. This effect could be even more noticeable with increasing temperature during the stage of mixture of the amine toughener with the cyclic carbonate modifier. High viscosity of cyclic carbonate modifiers complicates the process of mixing components of the epoxy compound and correspondingly its application as a backing of glues and linings. The authors researched cyclic carbonates of epoxidated soy oil with various averaged functionality as modifiers. Application of epoxy materials CESO-75 as a modifier has proven to be more forward-thinking for the reasons of cost-efficiency and for operating and technological properties. CESO lowers the coefficient of static friction for epoxy materials together with enhancing their abrasion hardness. Conclusions. Cyclic carbonates of epoxidated plant oils (soy oil and rubber tree oil) as rather efficient non-toxic modifiers of epoxy polymers are of practical interest. They are produced on the base of annually renewable plant raw materials. Their application enables to enhance abrasion hardness and adhesion properties of epoxy compounds and also improve their antifriction properties.

DOI: 10.22227/1997-0935.2018.12.1491-1498

Download

Results 1 - 1 of 1