HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Effect of velocity fluctuations length on the calculation accuracy of turbulent shearing stresses

Vestnik MGSU 9/2014
  • Volgin Georgiy Valentinovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 93-99

This article focuses on the method of improving shear stresses calculation accuracy based on the experimental data. It was proven that shear stresses value considerably changes (even up to change of sign from positive to negative) depending on different velocity fluctuations amount (or length). Experimental database consists of velocity in turbulent flow at different times. Recommendations for practical use of methods of calculation depending on the type of engineering problems are presented. The method of finding optimal amount of the experimental database is proposed by the analysis of the values convergence of the standard deviations calculated for the whole sample and the standard deviation calculated by increasing interval. The calculation results for these intervals are at the points of the measuring system and the hypothesis about finding the optimal length of implementation is offered. The steps for further research are set out.

DOI: 10.22227/1997-0935.2014.9.93-99

References
  1. Ivanov B.N. Mir fizicheskoy gidrodinamiki: Ot problem turbulentnosti do fiziki kosmosa [World of Physical Hydrodynamics: From Turbulence Problems to Space Physics]. Moscow, Editorial URSS Publ., 2002, 239 p.
  2. Loytsyanskiy L.G. O nekotorykh prilozheniyakh metoda podobiya v teorii turbulentnosti [On Some Applications of Similarity Method in Turbulence Theory]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1935, vol. 2, no. 2, pp. 180—206.
  3. Tarasov V.K., Volgina L.V., Gusak L.N. Prostranstvennye sostavlyayushchie turbulentnoy vyazkosti [Spatial Components of the Turbulent Viscosity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, ðð. 221—224.
  4. Borovkov V.S. Ruslovye protsessy i dinamika rechnykh potokov na urbanizirovannykh territoriyakh [Channel Processes and Dynamics of River Flows in Urbanized Territories]. Leningrad, Gidrometeoizdat Publ., 1989, 286 p.
  5. Volgina L.V. Vliyanie vida korrelyatsionnoy funktsii na metody opredeleniya makrostruktur turbulentnogo potoka [Influence of Correlation Function Type on the Methods of Identifying Macrostructures of Turbulent Flow]. 2 Mezhdunarodnaya (7 traditsionnaya) NTK molodykh uchenykh, aspirantov i doktorantov [2nd International (7th Traditional) Scientific and Technical Conference of Young Researchers, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2004, pp. 204—211.
  6. Tarasov V.K., Gusak L.N., Volgina L.V. Dvizhenie dvukhfaznykh sred i gidrotransport [Motion of Biphasic Media and Hydrotransport]. Moscow, MGSU Publ., 2012, 92 p.
  7. Volgina L.V. Izmeneniye masshtaba turbulentnostI i kasatel'nykh napryazheniy treniya pri rezkom izmenenii uklona [Changing the Scale of Turbulence and Shear Stresses in Case of Abrupt Change of Frictions Lope]. Materialy pyatoy NTK molodykh uchenykh, aspirantov i doktorantov [Proceedings of the Fifth Scientific and Technical Conference of Young Researchers, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2001, pp. 200—211.
  8. Smol'yakov A.V., Tkachenko V.M. Izmerenie turbulentnykh pul'satsiy [Measurement of Turbulent Fluctuations]. Leningrad, Energiya Publ., 1980, 264 p.
  9. Okulov V.L., Naumov I.V., Sorensen Zh.N. Osobennosti opticheskoy diagnostiki pul'siruyushchikh techeniy [Features of the Optical Diagnostics of Fluctuating Flows]. Zhurnal tekhnicheskoy fiziki [Technical Physics Journal]. 2007, vol. 77, no. 5, pp. 47—57.
  10. Bryanskaya Yu.V., Markova I.M., Ostyakova A.V. Gidravlika vodnykh i vzvesenesushchikh potokov v zhestkikh i deformiruemykh granitsakh [Hydraulics of Water Flows and Suspended Matter Bearing Flows in Rigid and Deformable Borders]. Moscow, ASV Publ., 2009, 264 p.
  11. Taryshkin R.A., Sabrirzyanov A.N., Fafurin V.A., Fefelov V.V., Yavkin V.B. Primeneniye RANS modeley turbulentnosti dlya rascheta raskhoda v raskhodomere so standartnoy diafragmoy [Application of RANS Turbulence Models to Calculate the Flow in the Flow Meter with a Standard Diaphragm]. Vestnik Udmurtskogo universiteta. Mekhanika [Proceedings of Udmurt State University. Mechanics]. 2010, no. 2, pp. 109—115.
  12. Volynov M.A. Vliyaniye planovoy geometrii rechnogo rusla na diffuziyu i dispersiyu primesey [Influence of Planned Geometry of the Riverbed on the Diffusion and Dispersion of Contaminants]. Fundamental'nyye issledovaniya [ Fundamental Research]. 2013, no. 6, part 3, pp. 535—540.
  13. Cellino M., Graf W.H. Sediment-laden Flow in Open-channels under Noncapacity and Capacity Conditions. Journal of hydraulic engineering. 1999, vol. 125, no. 5, pp. 455—462. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:5(455).
  14. Lyakhter V.M. Turbulentnost’ v gidrosooruzheniyakh [Turbulence inside Hydraulic Structures]. Moscow, Energiya Publ., 1968, 408 p.
  15. Zapryagayev V.I., Kavun I.N. Eksperimental'noye issledovanie vozvratnogo techeniya v peredney otryvnoy oblasti pri pul'satsionnom rezhime obtekaniya tela s igloy [Experimental Study of the Reverse Flow in the Separation Region in Front of a Pulsating Flow Regime of the Body with a Needle]. Prikladnaya mekhanika i tekhnicheskaya fizika [Applied Mechanics and Technical Physics]. 2007, vol. 48, no. 4, pp. 30—39.

Download

Results 1 - 1 of 1