### Development of generic Windows application for solving the tasks of the theory of graphs on design documentation stage

Pages 138-144

The discrete analysis methods, in particular the theory of graphs, are widely recognized as a tool for building mathematical model, including in construction. In the process of design documentation formation there always appears the necessity to plan project networks. At the present moment there is no reasonable generic program, which helps the designer to rapidly solve this task. The authors present the possibilities of using the generic program for Windows developed by them. The program allows solving key tasks of the theory of graphs. These tasks include the search (calculation) of the critical (project network planning) or optimal (resources delivery variant) path in the graph. The process (user interface) of graph formation corresponding to the target network in frames of the program is described. On the stage of construction project development there always appears a task of visual image of workflow process as a graph. So the project network is an image of an object erection. At that the events are depicted as rings, and works - as branches (arrows). The general view of the dialog box with the description of the possibilities of editing (adding and deleting vertexes and edges), saving the document, reading the document from file as well as optimal and critical paths are presented.

DOI: 10.22227/1997-0935.2014.9.138-144

- Klashanov F. Theoretical Base of the Building to Models of Management in Construction. Computing in Civil and Building Engineering. 2014, pp. 975—980. Available at: http://ascelibrary.org/doi/abs/10.1061/9780784413616.121. Date of access: 03.06.2014. DOI: http://dx.doi.org/10.1061/9780784413616.121.
- Klashanov F.K. Metody i metodologiya formalizatsii prinyatiya resheniya v stroitel'stve [Methods and Methodology of Decision Making Formalization in Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1, vol. 1, pp. 331—338.
- Golovan' A.M., Klashanov F.K., Petrova S.N. Oblachnye vychisleniya [Cloud Computing]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 6, pp. 411—417.
- Klashanov F.K. Primenenie metasistemnogo analiza v stroitel'stve [Using Metasystem Analysis in Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 1, pp. 228—234.
- Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to Algorithms. The MIT Press, 2009, 3rd edition, 1312 p.
- Nikanorov S.P. Rasshirenie predmeta teorii grafov [Expansion of the Graph Theory Subject]. Sistemnoe upravlenie. Problemy i resheniya [System Management. Problems and Solutions]. 2007, no. 8. Available at: http://www.supir.ru/index.php?m=articles&article_id=33. Date of access: 03.06.2014.
- Sarkar M.S. GXL: a New Graph Transformation Language. Proc. of the 42nd Annual Southeast Regional Conference. ACM New York, 2004, pp. 336—340.
- Kleyn M.F., Browne J.C. A High Level Language for Specifying Graph-Based Languages and their Programming Environments. Proc. of the 15th International Conference on Soft-ware Engineering. IEEE Computer Society Press Los Alamitos, CA, USA, 1993, pp. 324—335. DOI: http://dx.doi.org/10.1109/ICSE.1993.346032.
- Lin Y. A Recognition Problem in Converting Linear Programming to Network Flow Models. Appl. Math. J. Chinese Univer. 1993, vol. 8, no. 1, pp. 76—85.
- Geisberger R., Sanders P., Schultes D., Delling D. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. International Workshop on Experimental Algorithms (WEA 2008). Provincetown, Springer, 2008, pp. 319—333.
- Gunawan A., Ng K.M., Poh K.L. Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm. Int. J. Comput. Inform. Engin. 2007, vol. 1, no. 2, pp. 137—142.
- Sorokin A.A. Razrabotka programmnogo kompleksa dlya issledovaniya telekom-munikatsionnykh sistem s dinamicheskoy topologiey seti [Software Development for the Investigation of Telecommunication Systems with Dynamic Network Topology]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: upravlenie, vychislitel’naya tekhnika i informatika [Bulletin of the Astrakhan State Technical University. Series: Management, Computer Engineering, Computer Science]. 2011, no. 2, pp. 137—142.
- De Loera J.A., Kim E.D., Onn S., Santos F. Graphs of Transportation Polytopes. Journal of Combinatorial Theory — JCT. Ser. A, 2009, vol. 116, no. 8, pp. 1306—1325. DOI: http://dx.doi.org/10.1016/j.jcta.2009.03.010.
- Popkov V.K., Toktoshov G.Y. Gipersetevaya tekhnologiya optimizatsii inzhenernykh setey v gornoy ili peresechennoy mestnosti [Hyper Network Technology of Optimizing the Engineering Networks at Mountainous and Broken Area]. Vestnik Buryatskogo gosudarstvennogo universiteta [Proceedings of Buryat State University]. 2010, no. 9, pp. 276—282.
- Dijkstra E.W. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik. 1959, vol. 1, no. 1, pp. 269—271. DOI: http://dx.doi.org/10.1007/BF01386390.