Behaviour of high stretch bolts in tension working as part of elements of steel structures, and their tendency to delayed fracturing

Vestnik MGSU 11/2014
  • Moyseychik Evgeniy Alekseevich - Novosibirsk State Universityof Architecture and Civil Engineering (NSUACE (Sibstrin)) Candidate of Technical Sciences, Associate Professor, Doctoral Student, Department of Metal and Wooden Structures, Novosibirsk State Universityof Architecture and Civil Engineering (NSUACE (Sibstrin)), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 58-67

In the article, the author has proven that manufacturing and installation errors, as well as contact deformations of high strength bolts, if analyzed as part of tensile connections of steel structures, work in eccentric tension. In pursuance of the effective state standards, the analysis of these bolts is based on the axial tension. The author has analyzed the failure of a steel structure, caused by the fracture of eccentrically loaded bolts made of steel grade XC 42 (France), or C40 (Germany), that later followed the delayed fracturing pattern. The author provides the findings of the lab tests, whereby the above bolts were tested in the presence of an angle washer. The author has also analyzed the findings of low-temperature tests of bolts in tension. The author demonstrates that the strength of high strength bolts is driven by the material, the structure shape, and the thermal treatment pattern. Eccentric tension tests of bolts have proven that cracks emerge in the areas of maximal concentration of stresses (holes in shafts, etc.) that coincide with the areas where fibers are in tension; cracks tend to follow the delayed fracturing pattern, and their development is accompanied by the deformation-induced metal heating in the fracture area. Therefore, the analysis of high strength bolts shall concentrate on the eccentric tension with account for contact-induced loads, while the tendency to delayed fracturing may be adjusted through the employment of both metallurgical and process techniques.

DOI: 10.22227/1997-0935.2014.11.58-67

  1. Augustin Ya., Shledzevskiy E. Avarii stal'nykh konstruktsiy [Accidents on Steel Structures]. Translated from Polish. Moscow, Stroyizdat Publ., 1978, 183 p. (In Russian).
  2. Katyushin V.V. Zdaniya s karkasami iz stal'nykh ram peremennogo secheniya (raschet, proektirovanie, stroitel'stvo) [Building with Steel Frames of Variable Cross Section (Calculation, Design, Construction)]. Moscow, Stroyizdat Publ., 2005, 656 p. (In Russian).
  3. SP 16.13330.2011. Stal'nye konstruktsii. Aktualizirovannaya redaktsiya SNiP II-23—81* [Requirements SP 16.13330.2011. Steel Structures. The Updated Edition of Construction Rules SNIP II-23—81*]. Minregion Rossii [Ministry of Regional Development of Russia]. Moscow, OAO «TsPP» Publ., 2011, 178 p. (In Russian).
  4. Moyseychik E.A. Avarii sooruzheniy i ikh uchet pri nauchnom i normativnom obespechenii mostostroeniya [Crash of Structures and Accounting for Them in the Scientific and Regulatory Provision of Bridge Construction]. Avtomobil'nye dorogi i mosty [Highways and Bridges]. 2010, no. 1(5), pp. 109—114. (In Russian).
  5. Goritskiy V.M., Khromov D.P. Kachestvo i ekspluatatsionnaya nadezhnost' vysokoprochnykh boltov iz stali 40Kh «selekt» [Quality and Operational Reliability of High-strength Bolts of 40 "Select" Steel]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 1999, no. 5, pp. 21—22. (In Russian).
  6. Goritskiy V.M., Guseva I.A., Sotskov N.I., Kulemin A.M. Ustanovlenie prichiny razrusheniya vysokoprochnykh boltov M30 klassa prochnosti 12.9 importnogo proizvodstva [Determining Destruction Causes of Imported High-Strength Bolts M30 of 12.9 Strength Class]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2009, no. 5, pp. 21—24. (In Russian).
  7. Fridman Ya.B. Mekhanicheskie svoystva metallov : v 2-kh chastyakh. Ch. 2. Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost' [Mechanical Properties of Metals. In 2 parts. 3rd edition, revised and enlarged. Part 2. Mechanical Tests. Structural Strength]. Moscow, Mashinostroenie Publ., 1974, 368 p. (In Russian).
  8. Potak Ya.M. Khrupkie razrusheniya stali i stal'nykh izdeliy [Brittle Fracture of Steel and Steel Products]. Moscow, Oborongiz Publ., 1955, 389 p. (In Russian).
  9. Sil'vestrov A.V., Chibryakov G.G., Moyseychik E.A. Prochnost' boltov uzlovykh sopryazheniy strukturnykh konstruktsiy tipa «MArkhI» pri nizkikh temperaturakh [Strength Bolts for Interface Structural Designs of "MArkhI" Type at Low Temperatures]. Nadezhnost' konstruktsiy v ekstremal'nykh usloviyakh : sbornik nauchnykh trudov [Reliability of Structures under Extreme Conditions : Collection of Scientific Articles]. Yakutsk, YaGU Publ., 1984, pp. 77—82. (In Russian).
  10. Biryulev V.V. Proektirovanie metallicheskikh konstruktsiy [Design of Metal Structures]. Leningrad, Stroyizdat Publ., 1990, 432 p. (In Russian).
  11. Lakhtin Yu.M. Metallovedenie i termicheskaya obrabotka metallov [Metallurgy and Heat Treatment of Metals]. 3rd edition. Moscow, Metallurgiya Publ., 1983, 360 p. (In Russian).
  12. Krutikova I.A., Panfilova L.M., Smirnov L.A. Issledovanie sklonnosti k zamedlennomu razrusheniyu vysokoprochnykh boltovykh staley, mikrolegirovannykh vanadiem i azotom [Investigation of Susceptibility to Delayed Fracture of High-strength Bolting Steels Microalloyed with Vanadium and Nitrogen]. Metallurg [Steel Worker]. 2010, no. 1, pp. 59—64. (In Russian).
  13. Chertov V.M. Tsinkovanie — odna iz prichin vodorodnoy khrupkosti vysokoprochnoy stali [Galvanizing — One of the Reasons of Hydrogen Embrittlement of High Strength Steel]. Tekhnologiya mashinostroeniya [Engineering Technology]. 2006, no. 2, pp. 11—14. (In Russian).
  14. Filippov G.A. Zakonomernosti yavleniya zamedlennogo razrusheniya vysokoprochnykh staley i sposoby povysheniya treshchinostoykosti stal'nykh izdeliy [Regularities of the Phenomenon of Delayed Fracture of High Strength Steels and Ways to Improve the Fracture Toughness of Steel Products]. Thesis of the Doctor of Technical Sciences. Moscow, TsNIIChM im. I.P. Bardina Publ., 1989, 43 p. (In Russian).
  15. Mishin V.M. Strukturno-mekhanicheskie osnovy lokal'nogo razrusheniya konstruktsionnykh staley : monografiya [Structural and Mechanical Bases of Local Fracture of Structural Steels: Monograph]. Pyatigorsk, Spetspechat' Publ., 2006, 226 p.
  16. Mishin V.M., Filippov G.A. Kriteriy i fiziko-mekhanicheskaya kharakteristika soprotivleniya stali zamedlennomu razrusheniyu [Criterion and Physical Mechanical Characteristics of Steel Resistance to Delayed Fracture]. Deformatsiya i razrushenie materialov [Deformation and Fracture of Materials]. 2007, no. 3, pp. 37—42. (In Russian).
  17. Mishin V.M., Filippov G.A. Kineticheskaya model' zamedlennogo razrusheniya zakalennoy stali [Kinetic Model of Delayed Fracture of Hardened Steel]. Problemy chernoy metallurgii i materialovedeniya [Problems Ferrous Metallurgy and Materials Science]. 2008, no. 3, pp. 28—33. (In Russian).
  18. Shikhovtsov A.A., Mishin V.M. Kinetika i mikromekhanika zamedlennogo razrusheniya stali [Kinetics and Micromechanics of Delayed Steel Fracture]. Fundamental'nye issledovaniya [Fundamental Research]. 2013, no. 4 (4), pp. 858—861. Available at: Date of access: 11.10.2014. (In Russian).
  19. Geoffrey L. Kulak, John W. Fisher, John H. A. Struik. Guide to Design Criteria for Bolted and Riveted Joints. Chicago, American Institute of Steel Construction, Inc, 2001, 333 p.
  20. Eliaz N., Shachar A., Tal B., Eliezer D. Characteristics of Hydrogen Embrittlement, Stress Corrosion Cracking and Tempered Martensite Embrittlement in High-strength Steels. Engineering Failure Analysis. 2002, no. 9, pp. 167—184. DOI:
  21. Dayal R.K., Parvathavarthini N. Hydrogen Embrittlement in Power Plant Steels. Sadhana. June/August 2003, vol. 28, no. 3—4, pp. 431—–451. DOI:


Stress-strain state of friction joints with laser treatment of contact surfaces

Vestnik MGSU 1/2019 Volume 14
  • Gleb V Martynov - Peter the Great St. Petersburg Polytechnic University (SPbPU) undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
  • Monastyreva Daria E. - Peter the Great St. Petersburg Polytechnic University (SPbPU) undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
  • Makarov Aleksey I. - Peter the Great St. Petersburg Polytechnic University (SPbPU) undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.
  • Morina Elena A. - Peter the Great St. Petersburg Polytechnic University (SPbPU) undergraduate student, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation.

Pages 72-82

Introduction. Researched is conducted to determine the possibility of using an alternative method - laser cleaning. Laser systems have proven themselves in many areas and are a high-tech and effective solution for many construction problems. Despite this nowadays sandblasting is the most common method of processing contact surfaces of high-strength bolted joints - an outdated technology, with high equipment wear and even dangerous to people’s health. Materials and methods. Sandblast and laser-treated specimens were tested for shear. Before testing, the roughness of the contact surfaces and the tension force of high-strength bolts were tested. During the test, the readings of the meter and dial-indicator were taken. The experiments were carried out on a hydraulic press IPS-500, the samples were provided in a processed form. Results. According to the data obtained, strain graphs were plotted and the shear forces of the samples were calculated. Calculated efforts were compared with standard values. The results show the compliance of samples with the requirements of SP 35.13330.2016 “Bridges and pipes” in terms of strength characteristics. Samples with laser surface cleaning have a safety margin value similar to sandblasted samples. Conclusions. Comparison of the strength characteristics proves the possibility of using laser cleaning of the contact surfaces of friction joints. After the transition from outdated technologies, the process of surface preparation can be made economical and environmentally friendly. The obtained values and data can be entered into a number of regulatory documents, including SP 35.13330.2016 “Bridges and pipes” for future research and the widespread application of the method.

DOI: 10.22227/1997-0935.2019.1.72-82


Results 1 - 2 of 2