Emergency destruction of a panel residence building, type series 1-115
Pages 109-117
The co-authors consider the design solution developed for a panel residence building, type series 1-115, and provide a description of the emergency destruction of structural elements of a 9-storey panel residence building of this type (built in 1979), following a gas explosion. The overall length of the building is 86.4 m; its width is 12 m. The structural system in this building represents a longitudinal wall. Its external longitudinal walls are wade of ceramsite concrete, while its interior walls are made of concrete. Its reinforced concrete hollow slabs rest on the longitudinal load-bearing walls. The transverse walls of staircases are made of concrete blocks. The strip foundation supports the load-bearing walls of the building. The epicenter of the explosion was located in the kitchen on the eighth floor of the building. The kitchen was immediately adjacent to the staircase of the building. Partial destruction of the building followed the gas explosion. Exterior walls of its eighth and ninth floors and the attic were destroyed. Panel buildings designed in pursuance of the longitudinal structural system are more vulnerable to explosive loads compared to buildings designed to the cross-wall structural system, where bearing slabs rest on three interior walls. Thus, all slabs rest on each of the three internal walls of the building on both sides. In the buildings designed to the longitudinal wall structural system, slabs rest on the two walls, one of which is external. The article is based on the report following the inspection of the technical condition of the building, undertaken subsequent to its emergency destruction.
DOI: 10.22227/1997-0935.2014.11.109-117
- Tipovoy proekt 111-94-43/75.2 Dom 9-etazhnyy 4-sektsionnyy 144-kvartirnyy [The Standard Project 111-94-43/75.2 9-storey 4-section 144-apartment Residential Building]. Moscow, MNIITEP Publ., 1969. Available at: http://allproekt.ru/catalog/project/599606. Date of access: 11.09.2014. (In Russian).
- Bulgakov S.N., Tamrazyan A.G., Rakhman I.A., Stepanov A.Yu. Snizhenie riskov v stroitel’stve pri chrezvychaynykh situatsiyakh prirodnogo i tekhnogennogo kharaktera [Reduction of Risks in the Construction in Emergency Situations of Natural and Technogenic Character]. Moscow, MAKS Press, 2004, pp. 180—209. (In Russian).
- Posobie po proektirovaniyu zhilykh zdaniy. Vyp. 3. Konstruktsii zhilykh zdaniy (k SNiP 2.08.01—85) [Guidelines on Design of Residential Houses. Issue 3. Constructions of Residential Houses (to SNiP 2.08.01—85)]. Moscow, TsNIIEPzhilishcha Publ., 1986, 305 p.
- Maklakova T.G. Konstruirovanie krupnopanel'nykh zdaniy [Construction of Large-panel Buildings]. Moscow, Stroyizdat Publ., 1975, pp. 33—35. (In Russian).
- Kashevarova G.G., Pepelyaev A.A. Modelirovanie i retrospektivnyy analiz vzryva bytovogo gaza v kirpichnom zdanii [Modeling and Lookback Study of Utility Gas Explosion in Brick Buildings]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Buildings]. 2010, no. 2, pp. 31—36. (In Russian).
- Mkrtychev O.V., Dorozhinskiy V.B. Veroyatnostnoe modelirovanie vzryvnogo vozdeystviya [Probabilistic Modeling of Explosive Loading]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 278—282. (In Russian).
- Mkrtychev O.V., Dorozhinskiy V.B. Analiz podkhodov k opredeleniyu parametrov vzryvnogo vozdeystviya [Assessment of Reliability of the Foundation Slab Resting on the Linearly Deformable Bed and Characterized by the Modulus of Deformation Variable in X- and Y-axis Directions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 45—49. (In Russian).
- Mkrtychev O.V., Dorozhinskiy V.B. Bezopasnost’ zdaniy i sooruzheniy pri vzryvnykh vozdeystviyakh [The safety of buildings and structures under explosive effects]. Vestnik NITs Stroitel’stvo [Proceedings of Scientific Research Center Construction]. 2011, no. 3—4, pp. 21—34. (In Russian).
- Maes M.A., Fritzsons K.E., Glowienka S. Structural Robustness in the Light of Risk and Consequence Analysis. Structural Engineering International. 2006, vol. 16, no. 2, pp. 101—107. DOI: http://dx.doi.org/10.2749/101686606777962468.
- Kashevarova G.G., Pepelyaev A.A., Zobacheva A.Yu. Vozdeystvie vzryva bytovogo gaza na protsess deformirovaniya i razrusheniya konstruktsiy kirpichnogo zhilogo zdaniya [Impact of Utility Gas Explosion on the Deformation and Fracture of the Constructions of Brick Residential Buildings]. SWold : sbornik nauchykh trudov. Sovremennye napravleniya teoreticheskikh i prikladnykh issledovaniy 2012 : materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [SWold: Collection of Scientific Works. Current Trends of Theoretical and Applied Investigations 2012 : Materials of International Science and Practice Conference]. Odessa, KUPRIENKO Publ., 2012, issue 1, vol. 4, pp. 58—61. (In Russian).
- Kashevarova G.G., Pepelyaev A.A. Issledovanie problemy zashchity tipovykh zhilykh zdaniy ot progressiruyushchego razrusheniya [Study of the Problems of Standard Residential Buildings Protection from Progressive Collapse]. International Journal for Computational Civil and Structural Engineering. 2008, vol. 4, issue. 2, pp. 69—70. (In Russian).
- Pilyugin L.P. Obespechenie vzryvoustoychivosti zdaniy s pomoshch’yu predokhranitel’nykh konstruktsiy [Providing Explosion Stability of Buildings with Safety Constructions]. Moscow, Pozharnaya bezopasnost’ i nauka Publ., 2000, 224 p. (In Russian).
- Timothy Beach, Peggy Van Eepoel. Blast Protection and Historic Preservation. Civil Engineerig. October, 2012, pp. 66—71.
- Smith J.W. Structural Robustness Analysis and the Fast Fracture Analogy // Structural Engineering International. 2006, vol. 16, no. 2, pp. 118—123. DOI: http://dx.doi.org/10.2749/10.2749/101686606777962521.
- Starossek U. Typology of Progressive Collapse. Engineering Structures. 2007, vol. 29, no. 9, pp. 2302—2307. DOI: http://dx.doi.org/10.1016/j.engstruct.2006.11.025.
- Starossek U. Disproportionate Collapse: a Pragmatic Approach. Structures and Buildings. 2007, vol. 160, no. 6, pp. 317—325. DOI: http://dx.doi.org/10.1680/stbu.2007.160.6.317.
- Starossek U., Haberland M. Disproportionate Collapse: Terminology and Procedures. Journal of Performance of Constructed Facilities. 2010, vol. 24, no. 6, pp. 519—528. DOI: http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000138.
- Ellingwood B.R., Dusenberry D.O. Building Design for Abnormal Loads and Progressive Collapse. Infrastructure Engineering. 2005, vol. 20, no. 3, pp. 194—205. DOI: http://dx.doi.org/10.1111/j.1467-8667.2005.00387.x.
- Starossek U., Haberland M. Approaches to Measures of Structural Robustness. Structure and Infrastructure Engineering. 2011, vol. 7, nos. 7 and 8, pp. 625—631. DOI: http://dx.doi.org/10.1080/15732479.2010.501562.
- Al’bom rabochikh chertezhey po vosstanovleniyu konstruktsiy razrushennogo vzryvom gaza 9-etazhnogo doma po adresu: MO, g. Sergiev Posad, pos. Zagorskie Dali, d. 3 (OAO «KB im. A.A. Yakusheva») [Album of Working Drawings for Restoration of the Constructions of 9 Storey Building Destroyed by a Gas Explosion at Moscow Region, Sergiev Posad, Zagorskie Dali village, 3]. Moscow, 2013. (In Russian).