Chemical composition of silica-based biocidal modifier

Vestnik MGSU 11/2016
  • Grishina Anna Nikolaevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, senior research worker, Research and Educational Center “Nanomaterials and Nanotechnologies”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korolev Evgeniy Valer’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Advisor of RAACS, Director, Research and Educational Center “Nanomaterials and Nanotechnologies”, Prorector, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 58-67

Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH)6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

DOI: 10.22227/1997-0935.2016.11.59-67

Download

Using rice straw to manufacture ceramic bricks

Vestnik MGSU 11/2014
  • Gorbunov German Ivanovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Technology of Finishing and Insulation Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rasulov Olimdzhon Rakhmonberdievich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Technology of Finishing and Insulation Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 128-136

In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options): 1) rice straw combustion and ash formation outside the oven (in the oxidizing medium), and further application of ash as the additive in the process of burning clay mixtures; 2) adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

DOI: 10.22227/1997-0935.2014.11.128-136

References
  1. Adylov D.K., Bekturdiev G.M., Yusupov F.M., Kim R.N. Tekhnologiya polucheniya modifitsirovannykh volokon iz otkhodov agropromyshlennogo kompleksa dlya ispol'zovaniya pri proizvodstve asbestotsementnykh izdeliy [The Technology of Producing Modified Fibres of Agricultural Sector Waste for Producing Asbestos Cement Products]. Sotrudnichestvo dlya resheniya problemy otkhodov : materialy 8 Mezhdunarodnoy konferentsii, 23—24 fevralya 2011 goda, Khar'kov [Cooperation for Deciding the Problem of Waste: Materials of the 8th International Conference, February 23—24, 2011, Kharkiv]. Available at: http://waste.ua/cooperation/2011/theses/adylov.html. Date of access: 20.05.2014. (In Russian)
  2. Vinogradov V.V., Bylkov A.A., Vinogradov D.V. Patent RF ¹ 2171780, MPK Ñ01Â33/12, Ñ01Â33/32, Ñ09Ñ1/48. Tekhnologicheskiy modul' kompleksnoy pererabotki risovoy shelukhi. Zayavl. 05.10.1999 ; opublikovano 10.08.2001 [Russian Patent no. 2171780, MPK Ñ01Â33/12, Ñ01Â33/32, Ñ09Ñ1/48. Technological Modulus of Complex Processing of Rice Hulls. Appl. 05.10.1999 ; Publ. 10.08.2001]. Available at: http://www.findpatent.ru/patent/217/2171780.html/. Date of access: 20.05.2014. (In Russian)
  3. Vurasko A.V., Minakova A.R., Gulemina N.N., Driker B.N. Fiziko-khimicheskie svoystva tsellyulozy, poluchennoy okislitel'no-organosol'ventnym sposobom iz rastitel'nogo syr'ya [Physical and Chemical Properties of Cellulose Obtained by Oxidating-Organosolv Way of Vegetable Raw Materials]. Lesa Rossii v XXI veke : materialy 1-y Mezhdunarodnoy nauchno-prakticheskoy internet-konferentsii, iyun' 2009 [Forests of Russia in the 21st Century : Materials of the 1st International Scientific and Practical Internet-Conference, June 2009]. Saint Petersburg, 2005, pp. 231—233. (In Russian)
  4. Monsef Shokri R., Khripunov A.K., Baklagina Yu.G., Gofman I.V., Astapenko E.P., Smyslov R.Yu., Pazukhina G.A. Issledovanie komponentnogo sostava risovoy solomy IRI i svoystv poluchaemoy iz nee tsellyulozy [Investigation of the Composition of Rice Straw IRI and the Properties of Cellulose Obtained from It]. Novye dostizheniya v khimii i khimicheskoy tekhnologii rastitel'nogo syr'ya : materialy III Vserossiyskoy konferentsii 23—27 aprelya 2007 goda: v 3-kh knigakh [New Achievements in Chemistry and Chemical Technologies of Vegetable Raw Materials : Materials of the 3rd All-Russian Conference, April, 23—27, 2007 : in 3 volumes]. Barnaul, AltGU Publ., 2007, vol. 1, pp. 53—55. (In Russian)
  5. Vurasko A.V., Driker B.N., Mozyreva E.A., Zemnukhova L.A., Galimova A.R., Gulemina N.N. Resursosberegayushchaya tekhnologiya polucheniya tsellyuloznykh materialov pri pererabotke otkhodov sel’skokhozyaystvennykh kul’tur [Resource Saving Technology for Obtaining Cellulose Materials in Case of Crop Residues Processing]. Khimiya rastitel’nogo syr’ya [Vegetable Raw Materials Chemistry]. 2006, no. 4, pp. 5—10. (In Russian)
  6. Vurasko A.V., Driker B.N., Galimova A.R., Mertin E.V., Chistyakova K.N. Patent RF ¹ 2418122, MPK D21C3/26, D21C3/02, D21C3/04, D21C5/00. Sposob polucheniya tsellyulozy iz solomy risa. Zayavl. ¹ 2010118642/12, 07.05.2010; opubl. 10.05.2011. Byul. ¹ 13 [Russian Patent no. 2418122. MPK D21C3/26, D21C3/02, D21C3/04, D21C5/00. Method of Obtaining Cellulose of Rice Straw. No. 2010118642/12, Appl. 07.05.2010; Publ. 10.05.2011. Bull. no. 13]. Patent holder Ural State Forest Engineering University; 5 p. (In Russian)
  7. Dobrzhanskiy V.G., Zemnukhova L.A., Sergienko V.I. Patent RF ¹ 2106304. Sposob polucheniya vodorastvorimykh silikatov iz zoly risovoy shelukhi. ¹ 96118801; zayavl. 23.09.1996; opubl. 10.03.1998 [Russian Patent no. 2106304. Method of Obtaining Water-Soluble Silicates of Rice Straw Ashes. No. 96118801; appl. 23.09.1996; publ. 10.03.1998]. Patent holder Chemistry Institute of Far Eastern Branch of RAS. Available at: http://www.freepatent.ru/patents/2106304. Date of access: 20.05.2014. (In Russian)
  8. Pazukhina G.A., Sh.R. Monsef. Patent RF ¹ 2423570. MPK D21C1/06, D21C3/02, D21C5/00. Sposob polucheniya tsellyulozy iz solomy. ¹ 2010129321/12 ; zayavl. 16.07.2010; opubl. 10.07.2011, Byul. ¹ 19 [Russian Patent no. 2423570. MPK D21C1/06, D21C3/02, D21C5/00. Method of Obtaining Cellulose of the Straw. No. 2010129321/12 ; appl. 16.07.2010; Publ. 10.07.2011; Bulletin no. 19]. 6 p. Available at: http://www.freepatent.ru/patents/2423570. Date of access: 20.05.2014. (In Russian)
  9. Vinogradov V.V., Vinogradova E.P. Patent RF ¹ 2191159. MPK C01B33/00. Sposob polucheniya ul'tradispersnogo amorfnogo ili nanokristallicheskogo dioksida kremniya. ¹: 2001113925/12; zayavl. 25.05.2001; opubl. 20.10.2002 [Russian Patent no. ¹ 2191159. MPK C01B33/00. Method of Obtaining Ultradisperse Amorphic or Nanocrystal Silicon Dioxide. No. 2001113925/12; appl. 25.05.2001; publ. 20.10.2002]. Patent Holder N.A. Khachaturov. Available at: http://www.freepatent.ru/patents/2191159. Date of access: 20.05. 2014. (In Russian)
  10. Vinogradov V.V., Vinogradova E.P. Patent: RF ¹ 2191158. MPK. Ñ01Â33/12. Sposob podgotovki risovoy shelukhi dlya polucheniya vysokochistogo dioksida kremniya. ¹: 2001113525/12; zayavl. 22.05.2001; opubl. 20.10.2002 [Russian Patent no. 2191158. MPK. Ñ01Â33/12. Method of Preparing Rice Hulls for Obtaining High-purity Silicon Dioxide. No. 2001113525/12; appl. 22.05.2001; publ. 20.10.2002]. Patent holder N.A. Khachaturov. Available at: http://www.findpatent.ru/patent/219/2191158.html/. Date of access: 20.05.2014. (In Russian)
  11. Zemnukhova L.A., Fedorishcheva G.A. Patent RF ¹ 2394764. MPK Ñ01Â33/12; Â82Â1/00. Sposob polucheniya dioksida kremnya. ¹ 2009114380/15, zayavl. 15.04.2009; opubl. 20.07.2010. Byul. ¹ 20 [Russian Patent no. 2394764. MPK Ñ01Â33/12; Â82Â1/00. Method of Obtaining Silicon Dioxide. No. 2009114380/15, appl. 15.04.2009; publ. 20.07.2010. Billetin no. 20]. 8 p. Patent holder Chemistry Institute of Far Eastern Branch of RAS. Available at: http://www.freepatent.ru/patents/2394764. Date of access: 20.05.2014. (In Russian)
  12. Zemnukhova L.A., Fedorishcheva G.A., Egorov A.G., Sergienko V.I. Issledovanie usloviy polucheniya, sostava primesey i svoystv amorfnogo dioksida kremniya iz otkhodov proizvodstva risa [Investigation of the Obtaining Conditions, Admixture Composition and Properties of the Amorphous Silicon Dioxide of Rice Production Waste]. Zhurnal prikladnoy khimii [Applied Chemistry Journal]. 2005, vol. 78, no. 2, pp. 324—328. (In Russian)
  13. Skryabin A.A., Sidorov A.M., Puzyrev E.M, Shchurenko V.P. Patent RF 2291105. MPK Ñ01Â33/12; F23Ñ9/00. Sposob polucheniya dioksida kremniya i teplovoy energii iz kremniysoderzhashchikh rastitel'nykh otkhodov i ustanovka dlya szhiganiya melkodispersnykh materialov. Zayavl. 06.09.2005; opubl. 10.01.2007. Byul. ¹ 1 [Russian Patent no. 2291105. MPK Ñ01Â33/12; F23Ñ9/00. Method of Obtaining Silicon Dioxide and Heat Energy of Siliceous Vegetable Raw Materials and Installation for Burning Fine Materials. Appl. 06.09.2005; publ. 10.01.2007. Bulletin no. 1]. Patent holder Research and Design Canter “Biyskenergomash”, 10 p. Available at: http://www.freepatent.ru/patents/2291105. Date of access: 20.05.2014. (In Russian)
  14. Barmin M.I., Golubev M.I., Grebenkin A.N., Kartavykh V.P., Mel’nikov V.V. Tsellolignin v kachestve vygorayushchey dobavki pri proizvodstve keramicheskogo kirpicha [Cellolignin as a Combustible Addition in the Process of Ceramic Brick Production]. StroyPROFIl’ [Construction Profile]. 2008, no. 4-08, pp. 54—56. Available at: http://stroyprofile.com/archive/3122. Date of access: 20.05.2014. (In Russian)
  15. Rumyantsev B.M., Dang Shi Lan. Penozolobeton s aktivnym kremnezemom [Foam Ash Concrete with Activated Silica]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2006, no. 6, pp. 38—40. (In Russian)
  16. Gorbunov G.I., Rasulov O.R. Problemy ratsional’noy utilizatsii risovoy solomy [Problems of Rational Straw Utilization]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 106—113. (In Russian)
  17. Zhukov A.D., Gorbunov G.I., Belash N.V. Energosberegayushchaya tekhnologiya keramicheskoy plitki [Energy Saving Technology of Ceramic Tiles]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 122—130. (In Russian)
  18. Zemnukhova L.A., Yudakov A.A., Sergienko V.I. Patent RF ¹ 2245300, MPK C01B33/12, 33/18; F23G7/10. Sposob pererabotki kremniysoderzhashchego syr'ya i ustanovki dlya ego osushchestvleniya. ¹: 2003137329/15; zayavl. 24.12.2003; opubl. 27.01.2005. Byul. ¹ 3 [Russian Patent no. 2245300. Method of Processing Siliceous Raw Materials and Installations for that. No. 2003137329/15; appl. 24.12.2003; publ. 27.01.2005. Bulletin no. 3]. 10 p. Available at: http://www.freepatent.ru/images/patents/223/2245300/patent-2245300.pdf. Date of access: 20.05.2014. (In Russian)

Download

CHEMICAL COMPOSITION OF THE CEMENT STONE MODIFIED BY BARIUM HYDROSILICATES

Vestnik MGSU 10/2015
  • Grishina Anna Nikolaevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, senior research worker, Research and Educational Center “Nanomaterials and Nanotechnologies”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Korolev Evgeniy Valer’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials and Materials Science, Director, SEC “Nanomaterials and nanotechnology”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 66-74

The article is devoted to the investigation of chemical composition of cement stone modified by micro- and nanoscale barium hydrosilicates. It is shown that introduction of a nanomodifier leads to increased amount of various calcium hydrosilicates, lowers the amount of portlandite and calcium hydrosulfoaluminates. The specifics of influence of various barium hydrosilicates on the chemical composition of cement stone is revealed. It is shown that sol made of precursor with the content of С(Fe(OH)3) = 0.7 %, α = 1.0 (that was stored for 28 days) is the most effective among all other examined nanomodifiers. This can be due to the specific values of silicic acid concentration in the modifier and also by pH value of the medium; other factors may also affect the efficiency. Because of different content of silicic acid the modification of the portland cement by micro-sized barium hydrosilicates decreasesthe amount of portlandite (about two times). The sequential modification with nano- and micro-scale modifiers allows reducing the amount of portlandite by 3.67…60.5 times. Thus, nanomodification of the previously optimized (at the micro scale) cement composite (cement stone) is the most effective. High efficiency of the sol that was made of precursor with the content of С(Fe(OH)3) = 0.5 %, α = 1.5 is also observed. During our experiments we have also revealed the distinctive feature of the nanomodification of cement stone. This feature consists in content growth for specific type of calcium hydrosilicates. In particular, by means of using the sol that was made of precursor with the content of С(Fe(OH)3) = 0.5-0.7 %, α = 1.0, the amount of silicon-oxygen tetrahedrons can be magnified; the relative amount of silicon-oxygen ν(SiO) chains can also be increased in case of α = 1.5.

DOI: 10.22227/1997-0935.2015.10.66-74

References
  1. Sharapov R.R., Shaptala V.G., Alfimova N.I. Prognozirovanie dispersnykh kharakteristik vysokodispersnykh tsementov [Forecasting Disperse Characteristics of Finely-Dispersed Concretes]. Stroitel’nye materialy [Construction Materials]. 2007, no. 8, pp. 24—25. (In Russian)
  2. Mardanova E.I., Senerina N.V., Rakhimov R.Z. Vysokodispersnye napolnennye tsementy s ispol’zovaniem glinistykh peskov [Finely-Dispersed Filled Cements with the Use of Clay Sands]. Stroitel’nye materialy i izdeliya : sbornik [Construction Materials and Products :Collection]. 2000. Available at: http://sbcmi.ru/vysokodispersnye-napolnennye-tsementi-s-ispolzovaniem-glinistih-peskov. Date of access: 26.08.2015. (In Russian)
  3. UHPC Ultra High Performance Concrete with Nanodur Compound 5941. Available at: http://www.dyckerhoff.com/online/download.jsp?idDocument=110&instance=1. Date of access: 08.09.2015.
  4. Rastvor dlya in”ektsiy na osnove mikrotsementa [Solution for Injections Based on Micro Cement]. Available at: http://www.sika-yug.ru/Solutions_Products/Construction/Structural_bonding_and_strengthening_of_structures/Injectable_formulations_for_repair/Sika_Injectocem-190. Date of access: 25.08.2015. (In Russian)
  5. Strokova V.V., Nelyubova V.V., Altynnik N.I., Zhernovskiy I.V., Osadchiy E.G. Fazoobrazovanie v sisteme tsement — izvest’ — kremnezem v gidrotermal’nykh usloviyakh s ispol’zovaniem nanostrukturirovannogo modifikatora [Phase Formation in the System Cement — Lime — Silica in Hydrothermal Conditions with the Use of Nanostructured Modifier]. Stroitel’nye materialy [Construction Materials]. 2013, no. 9, pp. 30—33. (In Russian)
  6. Rakhimov R.Z., Khaliullin M.I., Gayfullin A.R., Stroyanov O.V. Keramzitovaya pyl’ kak aktivnaya dobavka v mineral’nye vyazhushchie — sostav i putstsolanovye svoystva [Ceramsite Dust as Active Agent in Cementing Materials — Composition and Pozzolanic Properties]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Herald of Kazan Technological University]. 2013, vol. 16, no. 19, pp. 57—61. (In Russian)
  7. Inozemtsev A.S. Metody IK- i KR-spektroskopii dlya issledovaniya protsessov strukturoobrazovaniya nanomodifitsirovannykh vysokoprochnykh legkikh betonov [Methods of Infrared and Raman Spectroscopy for Investigation of Structure Formation Processes of Nanomodified High-Strength Light Concretes]. Nauka i tekhnologiya: shag v budushchee — 2014 : materialy X Mezhdunarodnoy nauchno-prakticheskoy konferentsii, Praga [Science and Technology: Step into Future — 2014 : Materials of the 10th International Science and Practice Conference, Prague]. Obrazovanie i nauka Publ., 2014, vol. 31, pp. 26—30. (In Russian)
  8. Korolev E.V., Inocemcev A.S. Preparation and Research of the High-Strength Lightweight Concrete Based on Hollow Microspheres. Advanced Materials Research. 2013, vol. 746, pp. 285—288. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.746.285.
  9. Grishina A.N., Korolev E.V. Effektivnost’ modifitsirovaniya tsementnykh kompozitov nanorazmernymi gidrosilikatami bariya [Efficiency of Modifying Cement Composites with Nanoscale Barium Hydrosilicate]. Stroitel’nye materialy [Construction Materials]. 2015, no. 2, pp. 72—76. (In Russian)
  10. Korolev E.V., Grishina A.N. Sintez i issledovanie nanorazmernoy dobavki dlya povysheniya ustoychivosti pen na sinteticheskikh penoobrazovatelyakh dlya penobetonov [Synthesis and Investigation of Nanoscale Additive for Raising the Stability of Foams on Synthetic Foam Agents for Foam Concretes]. Stroitel’nye materialy [Construction Materials]. 2013, no. 2, pp. 30—33. (In Russian)
  11. Shishelova T.I., Sozinova T.V., Konovalova A.N. Praktikum po spektroskopii [Practicum on Spectroscopy]. Voda v mineralakh [Water in Minerals]. Moscow, Akademiya Estestvoznaniya Publ., 2010, 88 p. (In Russian)
  12. Makridin N.I., Vernigorova V.N., Maksimova I.N. O mikrostrukture i sinteze prochnosti tsementnogo kamnya s dobavkami GSK [On Microstructure and Synthesis of Cement Stone Reliability with Hydrated Calcium Silicate Additives]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2003, no. 8, pp. 37—42. (In Russian)
  13. Chukin G.D. Khimiya poverkhnosti i stroenie dispersnogo kremnezema [Chemistry of Surface and Composition of Disperse Silica]. Moscow, Tipografiya Paladin Publ., OOO «Printa» Publ., 2008, 172 p. (In Russian)
  14. Korovkin M.V. Fizicheskie metody izucheniya mineralov (Ch. II) [Physical Methods of Investigating Minerals]. Available at: https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CBwQFjAAahUKEwiQ5fiovefHAhWHg3IKHWFWCWs&url=http%3A%2F%2Fportal.tpu.ru%2FSHARED%2Fm%2FMVK%2Ftraining%2FTab1%2FLecture_IKS(part_2).ppt&usg=AFQjCNFx47tVkQ_xsXsuhlI1ZKS79pWPqQ&bvm=bv.102022582,d.bGQ. Date of access: 27.08.2015. (In Russian)
  15. Chukin G.D., Malevich V.I. Infrared Spectra of Silica. Journal of Applied Spectroscopy. February 1977, vol. 26, no. 2, pp. 223—229. DOI: http://dx.doi.org/10.1007/BF00615613.
  16. Chukin G.D., Apretova A.I. Silica Gel and Aerosil IR Spectra and Structure. Journal of Applied Spectroscopy. April 1989, vol. 50, no. 4, pp. 418—422. DOI: http://dx.doi.org/10.1007/BF00659489.
  17. Innocenzi Plino. Infrared Spectroscopy of Sol-Gel Derived Silica-Based Films: A Spectra-Microstructure Overview. Journal of Non-Crystalline Solids. February 2003, vol. 319, issues 2-3, pp. 309—319. DOI: http://dx.doi.org/10.1016/S0022-3093(02)01637-X.
  18. El Rassy H., Pierre A.C. NMR and IR Spectroscopy of Silica Aerogel with Different Hydrophobic Characteristics. Journal of Non-Crystalline Solids. 2005, vol. 351, pp. 1603—1610. DOI: http://dx.doi.org/10.1016/j.jnoncrysol.2005.03.048.
  19. Chiyoe Koike, Yuta Imai, Ryo Noguchi, Hiroki Chihara, Akira Tsuchiyama, Osamu Ohtaka. IR Spectra of Silica (SiO2) Polymorphs. Available at: www.cps-jp.org/~mosir/pub/2011/2011-11-09/03_koike/pub-web/20111109_koike.pdf. Date of access: 28.08.2015.
  20. Dubrovin V.K., Zaslavskaya O.M., Chesnokov A.A. Mekhanizm gidratatsii kristallogidratnykh formovochnykh smesey na osnove silikatov kal’tsiya [Hydration Mechanism of Crystallohydrated Calcium Silicate Based Investments]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya [Bulletin of the South Ural State University. Series: Metallurgy]. 2010, no. 13 (189), pp. 59—63. (In Russian)
  21. Korolev E.V., Grishina A.N., Satyukov A.B. Khimicheskiy sostav nanomodifitsirovannogo kompozitsionnogo vyazhushchego s primeneniem nano- i mikrorazmernykh gidrosilikatov bariya [Chemical Composition of Nanomodified Composite Binder with Nano- and Microsized Barium Silicate]. Nanotekhnologii v stroitel’stve: nauchnyy internet zhurnal [Nanotechnologies in Construction: Scientific Internet Journal]. 2014, vol. 6, no. 4, рр. 90—103. (In Russian)

Download

DRINKING WATER PURIFICATION FROM STRONTIUM BY THE FILTRATION METHOD USING CLINOPTILOLITE

Vestnik MGSU 4/2017 Volume 12
  • Shcherbakov Vladimir Ivanovich - Voronezh State Technical University (VSTU) Doctor of Technical Sciences, Professor of Department of Hydraulics, Voronezh State Technical University (VSTU), 14 Moscow Avenue, Voronezh, Russian Federation, 394026.
  • Al'-Amri Zaed Sadik Abrahem - Voronezh State Technical University (VSTU) Graduate Student of Department of Hydraulics, Water Supply and Water Disposal, Voronezh State Technical University (VSTU), 14 Moscow Avenue, Voronezh, Russian Federation, 394026.
  • Mikhaylin Aleksey Viktorovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Senior Lecturer of the Department of Water Supply and Water Disposal, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, Russian Federation, 129337.

Pages 457-463

At present, the term “water hardness” is used to describe the total concentration of calcium, magnesium, and strontium in equivalent terms. Strontium is close to calcium by its chemical properties but differs from it dramatically by the biological effect. Long-term use of water with an increased content of strontium (Sr) leads to the development of various diseases among the population. Especially, it is dangerous for children. Strontium refers to the sanitary-toxicological hazard class by the limiting harmfulness indicator. The aim of the studies was to determine the effectiveness of stable strontium sorption on clinoptilolite in conditions of increased groundwater hardness. Based on experimental studies on the laboratory clinoptilolite filter, the output dependences of the residual concentration of hardness and strontium in the filtrate on the relative volumes of the filtrated water were plotted. As a result of the research, positive results of application of clinoptilolite of Kholinsky deposit were obtained.

DOI: 10.22227/1997-0935.2017.4.457-463

Download

Results 1 - 4 of 4