Concept for the generation of the model designated for the simulation of interaction between enterprises comprising one major construction company

Vestnik MGSU 11/2014
  • Dubovkina Alla Viktorovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Assistant Lecturer, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 180-187

The author offers an original concept designated for the generation of the model designated to simulate interaction between the enterprises comprising one major construction company within the framework of the production and logistics chain, comprising production facilities, transport enterprises, construction and assembly companies. The author has identified the factors that may produce an adverse effect on construction operations or cause untimely commissioning of a construction facility. The author employed methods of mathematics to describe the operations performed by each constituent enterprise. A graphic model describing each operation was compiled through the integration of mathematical functions. The model binds specific operations, performed by constituent companies, to deadlines, drives attention to interaction bottlenecks, and makes adjustments to assure reliable attainment of the main goal, that is, the timely commissioning of a construction facility.

DOI: 10.22227/1997-0935.2014.11.180-187

  1. Alekseev N.S. Evolyutsiya sistem upravleniya predpriyatiem [Evolution of Enterprise Management Systems]. Problemy teorii i praktiki upravleniya [Problems of the Theory and Practice of Management]. 1999, no. 2. Available at: Date of access: 12.10.2014. (In Russian)
  2. Bowersox D., Closs D. Logistical Management: The Integrated Supply Chain Process. McGraw-Hill Companies, 4th edition, 496 p.
  3. Egorov A.I. Osnovy teorii upravleniya [Fundamentals of Management Theory]. Moscow, FIZMATLIT Publ., 2011, 504 p.
  4. Zaytsev E.I. Logistika i sinergetika. Novaya paradigma v teoreticheskoy logistike [Logistics and Synergy. A New Paradigm in Theoretical Logistics]. Logistika i upravlenie tsepyami postavok [Logistics and Supply Chain Management]. 2004, no. 1, pp. 7—13. (In Russian)
  5. Bigdan V.B., Pepelyaev V.A., Sakhnyuk M.A. Aktual’nye problemy i tendentsii v oblasti sovremennogo imitatsionnogo modelirovaniya [Current Problems and Trends in the Field of Modern Simulation] // Problemy programmuvaniya [Problems of Programming]. 2004, no. 2, 3, pp. 505—509. Naukova elektronna b³bl³oteka per³odichnikh vidan’ NAN Ukra¿ni [Scientific Internet Library of Periodicals of the National Academy of Sciences of Ukraine]. Available at: Date of access: 12.10.2014. (In Russian)
  6. Burkov V.N., Irikov V.A. Modeli i metody upravleniya organizatsionnymi sistemami [Models and Methods for Managing Organizational Systems]. Moscow, Nauka Publ., 1994, 270 p. (In Russian)
  7. Gol’dshteyn G.Ya. Strategicheskiy innovatsionnyy menedzhment: tendentsii, tekhnologii, praktika : monografiya [Strategic Innovation Management: Trends, Technology, Practice: a Monograph]. Taganrog, TRGU Publ., 2006, 179 p. (In Russian)
  8. Degtyarev Yu.I. Issledovanie operatsiy [Operations Research]. Moscow, Vysshaya shkola Publ., 1996, 320 p. (In Russian)
  9. Dubeykovskiy V.I. Effektivnoe modelirovanie s CA ERwin Process Modeler (BPwin; AllFusion Process Modeler) [Effective Modeling with CA ERwin Process Modeler (BPwin; AllFusion Process Modeler)]. Moscow, Dialog-MIFI Publ., 2009, 384 p. (In Russian)
  10. Ivanov D.A. Razrabotka modeli upravleniya logisticheskimi tsepyami v slozhnykh proizvodstvennykh strukturakh [Developing a Model of Logistic Chains in Complex Production Structures]. Biznes i logistika — 2003 : sbornik materialov Moskovskogo Mezhdunarodnogo logisticheskogo foruma [Business and Logistics — 2003: Collection of the Moscow International Logistics Forum]. Moscow, Stolichnyy biznes Publ., 2003, pp. 33—37. (In Russian)
  11. Moiseev N.N. Elementy teorii optimal’nykh sistem [Elements of the Theory of Optimal Systems]. Moscow, Nauka Publ., 1975, 528 p. (In Russian)
  12. Moiseev N.N. Matematicheskie zadachi sistemnogo analiza [Mathematical Problems of System Analysis]. Moscow, Nauka Publ., 1981, 488 p. (In Russian)
  13. Savin G.I. Sistemnoe modelirovanie slozhnykh protsessov [System Modeling of Complex Processes]. Moscow, Fazis Publ., 2000, 280 p. (In Russian)
  14. Toluev Yu.I., Nekrasov A.G., Morozov S.I. Analiz i modelirovanie material’nykh potokov v setyakh postavok [Analysis and Modeling of Material Flow in Supply Chains]. Integrirovannaya logistika [Integrated Logistics]. 2005, no. 5, pp. 7—14. (In Russian)
  15. Toluev Yu.I. Metodologiya sozdaniya modeley logisticheskikh setey na baze standartnykh sredstv imitatsionnogo modelirovaniya [Methodology for creating models of logistics networks based on the standard tools of simulation]. Logistics, Supply Chain Management and Information Technologies: Proceedings of the German-Russian Logistics Workshop. St. Petersburg, Publishing House of the State Polytechnic University, 2006, pp. 133—142. (In Russian)
  16. Nekrasov A.G. Vzaimodeystvie informatsionnykh resursov v logisticheskikh tsepochkakh postavok (na primere transportnoy otrasli) [Interaction of Information Resources in Logistic Supply Chains (on the Example of the Transport Sector)]. Moscow, Tekhpoligraftsentr Publ., 2002, 205 p. (In Russian)
  17. Stock J., Lambert D. Strategic Logistics Management. McGraw-Hill/Irwin; 4 edition, 2000, 896 p.
  18. Davidow W., Malone M. The Virtual Corporation: Structuring and Revitalizing the Corporation for the 21st Century. New York, Harper Collins, 1992, 187 p.
  19. Orlovskiy S.A. Problemy prinyatiya resheniy pri nechetkoy iskhodnoy informatsii [Decision Making with Fuzzy Initial Information]. Moscow, Nauka Publ., 1981, 208 p. (In Russian).
  20. Nishiyama D., Radosavljevic M. Mathematical Modelling of Decision Making Processes in Construction Projects. 25th Annual ARCOM Conference, 7—9 September 2009, Nottingham, UK. 2009, pp. 95—94.



Vestnik MGSU 10/2012
  • Tamrazyan Ashot Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, full member, Russian Engineering Academy, head of the directorate, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 109 - 115

Accurate and adequate description of external influences and of the bearing capacity of the structural material requires the employment of the probability theory methods. In this regard, the characteristic that describes the probability of failure-free operation is required. The characteristic of reliability means that the maximum stress caused by the action of the load will not exceed the bearing capacity.
In this paper, the author presents a solution to the problem of calculation of structures, namely, the identification of reliability of pre-set design parameters, in particular, cross-sectional dimensions. If the load distribution pattern is available, employment of the regularities of distributed functions make it possible to find the pattern of distribution of maximum stresses over the structure.
Similarly, we can proceed to the design of structures of pre-set rigidity, reliability and stability in the case of regular load distribution. We consider the element of design (a monolithic concrete slab), maximum stress which depends linearly on load . Within a pre-set period of time, the probability will not exceed the values according to the Poisson law.
The analysis demonstrates that the variability of the bearing capacity produces a stronger effect on relative sizes of cross sections of a slab than the variability of loads. It is therefore particularly important to reduce the coefficient of variation of the load capacity. One of the methods contemplates the truncation of the bearing capacity distribution by pre-culling the construction material.

DOI: 10.22227/1997-0935.2012.10.109 - 115

  1. Lychev A.S. Sposoby vychisleniya veroyatnosti otkaza v kompozitsii raspredeleniy prochnosti i nagruzki [Methods of Calculation of the Probability of Failure within the Framework of the Distribution of Strength and Load]. Trudy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Collected works of the international scientific and technical conference]. Samara, 1997, pp. 33—37.
  2. Tichy M. In the Reliability Measure. Struct. Safety. 1988, vol. 5, pp. 227—232.
  3. Araslanov A.S. Raschet elementov konstruktsiy zadannoy nadezhnosti pri sluchaynykh vzaimodeystviyakh [Calculation of Structural Elements with the Pre-set Reliability If Exposed to Random Interactions]. Moscow, 1986, 268 p.
  4. Tamrazyan A.G. Otsenka riska i nadezhnosti nesushchikh konstruktsiy i klyuchevykh elementov — neobkhodimoe uslovie bezopasnosti zdaniy i sooruzheniy [Assessment of Risk and Reliability of Bearing Structures and Key Elements as the Necessary Condition of Safety of Buildings and Structures]. Vestnik TsNIISK [Bulletin of Central Research and Development Institute of Building Structures]. 2009, no. 1, pp. 160—171.
  5. JSO/TK 98 ST 2394. General Principles on Reliability for Structures. 1994, pp. 50.
  6. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii [Theory of Reliability in Structural Design]. Moscow, ASV Publ., 1998, 304 p.


Results 1 - 2 of 2