ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Natural light design in premises with roof natural lighting system with consideration of lighting effects of the surrounding housing

Vestnik MGSU 12/2014
  • Stetskiy Sergey Vyacheslavovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Larionova Kira Olegovna - Moscow State University of Civil Engineering (MGSU) senior lecturer, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 20-30

The article considers the problems connected with new offers on a daylight factor design in premises with roof natural lighting system with account of lighting effect of surrounding buildings. The offers for daylight design are based on a hypothesis of possible use of some design points for side natural lighting of interiors in the design of roof natural lighting. This is connected with a need to account for a lighting effect of neighborhood buildings. This effect must be considered in the case of lighting design for underground or sub-around buildings. These theoretical offers were confirmed with practical experiment results. The problem, discussed in the article has been stated and analyzed before by a number of domestic and foreign authors. These questions arose mainly because of the broad developing activity in the construction of underground and below-ground buildings and structures, mainly bound with public premises. The need of such development can be explained by the lack of vacant city areas, especially in the central parts. Moreover, the construction methods of such a development are much simpler, as compared with traditional construction technologies of above-ground objects. As for indoor lighting conditions in the underground and below-ground buildings, the only possible way to provide sufficient lighting of interiors is an implementation of roof lighting system in the form of skylights or monitors with one-side or two-side glazing. It is obvious, however, that these roof lighting units are influenced by shadowing effect of the surrounding buildings, which can decrease the incoming light flow to the interiors. This point is the main one, which forced the authors to investigate this scientific problem.

DOI: 10.22227/1997-0935.2014.12.20-30

References
  1. Stetskiy S.V., Larionova K.O. Zatenyayushchee vliyanie okruzhayushchey zastroyki pri sisteme verkhnego estestvennogo osveshcheniya grazhdanskikh zdaniy [Shadowing Effect of Surrounding Buildings in Case of Natural Overhead Lighting Systems of Civil Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 44—47. (In Russian)
  2. Zemtsov V.A. Voprosy proektirovaniya i rascheta estestvennogo osveshcheniya pomeshcheniy cherez zenitnye fonari shakhtnogo tipa [Issues of Design and Analysis of Natural Lighting of Premises through Shaft-type Skylights]. Svetotekhnika [Illumination Engineering]. Moscow, 1990, no. 10, pp. 25—36. (In Russian)
  3. Stetskiy S.V., Chen Guanglong. Sozdanie kachestvennoy svetovoy sredy v pomeshcheniyakh proizvodstvennykh zdaniy dlya klimaticheskikh usloviy yugo-vostochnogo Kitaya [Development of a High-quality Illumination Environment in the Premises of Industrial Buildings in the Climatic Conditions of Southeast China]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 7, pp. 16—25. (In Russian)
  4. Zemtsov V.A. Estestvennoe osveshchenie pomeshcheniy cherez zenitnye fonari shakhtnogo tipa [Natural Lighting of Premises through Roof Lights of a Vine-type]. Issledovanie po stroitel’noy svetotekhnike : sbornik nauchnykh trudov NIISF [Research Works on Structural Mechanics: Collection of Scientific Works of the Research Institute for Building Physics]. Moscow, 1981, pp. 28—31. (In Russian)
  5. Balkheeva V.A. Metodika rascheta estestvennogo osveshcheniya pomeshcheniy s uchetom sveta, otrazhennogo ot territoriy [Calculation Methods of Natural Illumination of Premises with Regard of the Light, Refl ected from a Territory]. Svetotekhnika [Light and Engineering]. 1990, no. 10, pp. 32—35. (In Russian)
  6. Solov’ev A.K. Proektirovanie estestvennogo osveshcheniya zdaniy s ispol’zovaniem prostranstvennykh kharakteristik svetovogo polya [Design of Natural Lighting of Buildings with the Use of Spatial Characteristics of Light Field]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 453—460. (In Russian)
  7. Brotash L., Uilson M. Raschet pokazateley estestvennogo osveshcheniya [Calculation of Natural Lighting Factors]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 44—47. (In Russian)
  8. Mokhel’nikova Y. Estestvennoe osveshchenie i fonari verkhnego sveta [Natural Lighting and Roof Lights]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 26—30. (In Russian)
  9. Solov’ev A.K. Raspredelenie yarkosti po nebosvodu i ego uchet pri proektirovanii estestvennogo osveshcheniya zdaniy [Sky Luminance Distribution and Account for it in the Natural Lighting Design of Buildings]. Svetotekhnika [Light and Engineering]. 2008, no. 6, pp. 18—22. (In Russian)
  10. Bakharev D.V., Zimnovich I.A. K teoreticheskomu analizu empiricheskoy yarkosti fasadov [To a Theoretical Analysis of Empirical Luminance of Facades]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 10—17. (In Russian)
  11. Egorchenkov V.A. Opredelenie yarkosti zemnoy poverkhnosti pri raschete estestvennogo osveshcheniya zdaniy [Luminance of a Ground Surfaces Determination in the Calculation of Natural Lighting of Buildings]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 56—57. (In Russian)
  12. Slukin V.M., Simakova E.S. Problemy estestvennogo osveshcheniya pomeshcheniy v uplotnennoy gorodskoy zastroyke [Problems of Natural Illumination of Premises in Dense Development]. Akademicheskiy vestnik UralNIIproekt RAASN [Academic Proceedings of the Ural Scientific, Research and Design Institute of the Russian Academy of Architecture and Construction Sciences]. 2010, no. 2, pp. 56—60. (In Russian)
  13. Slukin V.M., Smirnov L.N. Obespechenie normirovannykh usloviy estestvennogo osveshcheniya zhilykh zdaniy v uplotnennoy gorodskoy zastroyke [Ensuring the Normalized Conditions of Natural Illumination of Residential Buildings in Dense Urban Development]. Akademicheskiy vestnik UralNIIproekt RAASN [Academic Proceedings of the Ural Scientific, Research and Design Institute of the Russian Academy of Architecture and Construction Sciences]. 2011, no. 4, pp. 75—77. (In Russian)
  14. Tregenza P.R. The Daylight Factor and Actual Illuminance Ratios. Lighting Research and Technology. 1980, vol. 12, no. 2, pp. 64—68. DOI: http://dx.doi.org/10.1177/096032718001200202.
  15. Tregenza P.R. Measured and Calculated Frequency Distributions of Daylight Illuminance. Lighting Research and Technology. 1986, vol. 18, no. 2, pp. 71—74. DOI: http://dx.doi.org/10.1177/096032718601800202.
  16. Brotas L., Wilson M. Daylight in Urban Canyons: Planning in Europe. PLEA2006 The 23rd Conference on Passive and Low Energy Architecture. Geneva, Switzerland, 6—8 September 2006, Proc. II, pp. 207—212.
  17. Lynes J.A. A Sequence for Daylighting Design. Lighting Research and Technology. 1979, vol. 11, no. 2, pp. 102—106. DOI: http://dx.doi.org/10.1177/14771535790110020101.
  18. Cuttle C. Sumner’s Principle: A Discussion. Lighting Research and Technology. 1991, no. 2, pp. 99—106.
  19. Lay S.D. Appraisal of the Visual Environment. L.E.D. Lighting Review. 1970, pp. 129—138.
  20. Irens A.N. Light and Productivity. Transactions of the Illumination Engineering Society. London, 1960, vol. 25, no. 2, pp. 53—68.
  21. Solov’ev A.K. Polye trubchatye svetovody: ikh primenenie dlya estestvennogo osveshcheniya zdaniy i ekonomiya energii [Hollow Tubular Light Conductors: Their Application for Natural Lighting of Buildings and Saving of Energy]. Svetotekhnika [Light and Engineering]. 2011. No. 5. C. 41—47. (In Russian)

Download

INDOOR LIGHT ENVIRONMENT INSIDE RESIDENTIAL BUILDINGS IN THE EVENT OF APPLICATION OF COMBINED METHODS OF SUN PROTECTION

Vestnik MGSU 8/2012
  • Stetskiy Sergey Vyacheslavovich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Professor, Department of Architecture, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Khodeir Walid Abbas - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Architecture, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 39 - 45

The article deals with the problem of enhancing the light environment inside residential buildings
by means of combined methods of sun protection in the hot and sunny climate of Lebanon.
The proposed sunscreens are effective both if the insolation intensity goes up and down. For
example, the light, refl ected by the sun protection unit located below the storey in question, brings
more natural light into those sections of rooms that are located further from the window, so the illumination
factor in these areas is substantially increased. However, the aforementioned pattern
of natural light design is effi cient in the clear sky environment of the sunny climate, which differs
a lot from the standard conditions of the grey sky. On top of the above, the new approach to the
identifi cation of the T4 factor value is proposed. This factor describes the impact produced by the
sunscreen in the clear sky environment. In this case, its value shall not be taken as constant.
Theoretical and practical research was completed to identify the role of sun protection devices
(sunscreens) in the course of natural (passive) regulation of the light environment inside buildings.
The principal item of research was the condition of the illumination environment inside the premises
under consideration. The research was performed inside a residential building located in a new
district of Beirut, the capital of Lebanon. The research comprised several stages, including theoretical
and fi eld researches of the light environment inside the premises under consideration in the
aftermath of installation of sunscreens.

DOI: 10.22227/1997-0935.2012.8.39 - 45

References
  1. Gusev N.M. Osnovy stroitel’noy fi ziki [Fundamentals of Building Physics]. Moscow, Stroyizdat Publ., 1975.
  2. Tvarovskiy M. Solntse v arkhitekture [Sun in Architecture]. Moscow, Stroyizdat Publ., 1977.
  3. Mitnik M.Yu., Spiridonov A.V. Inzhenernyy metod rascheta sistem estestvennogo osveshcheniya pomeshcheniy s ratsional’noy solntsezashchitoy [Engineering Method of Analysis of Natural Lighting Systems in the Premises with Rational Sunlight Protection]. Svetotekhnika [Illumination Engineering]. 1990, no. 10. pp. 16—19.
  4. Kharnes E., Mekhta M. Regulirovanie solnechnoy radiatsii v zdaniyakh [Regulation of Solar Radiation inside Buildings]. Moscow, Stroyizdat Publ., 1984.
  5. Solov’ev A.K. Otsenka svetovoy sredy proizvodstvennykh pomeshcheniy v usloviyakh yasnogo neba [Assessment of the Lighting Environment of Industrial Premises in the Clear Sky Climate]. Moscow, Svetotekhnika [Illumination Engineering]. 1987, no. 7. pp. 14—16.
  6. Stetskiy S.V., Amkhaz Kh. Rol’ solntsezashchitnykh ustroystv v pomeshcheniyakh administrativnykh zdaniy dlya usloviy Beyruta [The Role of Sun Protection Devices in the Premises of Offi ce Buildings in the Conditions of Beirut]. Stroitel’nye materialy, oborudovanie i tekhnologii XXI veka [Building Materials, Equipment and Technologies of the 21st Century]. 2004, no. 12. pp. 52—53.
  7. SNiP 23-05—95*. Estestvennoe i iskusstvennoe osveshchenie. [Construction Norms and Rules 23-05—95*. Natural and Artificial Illumination]. Moscow, State Committee for Construction, Residential Housing and Utilities, 2004.
  8. SP 23-102—2003. Estestvennoe osveshchenie zhilykh i obshchestvennykh zdaniy. [Construction Rules 23-102-2003. Natural Illumination of Residential and Public Buildings]. Moscow, State Committee for Construction, Residential Housing and Utilities, 2003.
  9. Stetskiy S.V., Suliman Samekh. Povyshenie urovney estestvennoy osveshchennosti v pomeshcheniyakh grazhdanskikh zdaniy s sistemoy bokovogo estestvennogo osveshcheniya dlya usloviy zharkogo i solnechnogo klimata [Improvement of Natural Illumination in Civic Buildings That Have a System of Natural Side Illumination in the Hot and Sunny Climate]. Moscow, Stroitel’nye materialy, oborudovanie i tekhnologii XXI veka [Building Materials, Equipment and Technologies of the 21st Century]. 2005, no. 5. pp. 82—84.
  10. Suliman Samekh. Sozdanie stroitel’nymi metodami komfortnoy akusticheskoy, svetovoy i insolyatsionnoy sredy dlya pomeshcheniy grazhdanskikh zdaniy v usloviyakh krupnykh gorodov Sirii (na primere goroda Damaska) [Employment of Civil Engineering Methods for the Generation of a Comfortable Architectural, Illumination and Insolation Environment for the Premises of Civic Buildings in Major Cities of Syria (exemplifi ed by Damascus)]. Moscow, 2006.
  11. Salo Mokhamed Ali. Povyshenie effektivnosti sistem estestvennogo osveshcheniya v proizvodstvennykh zdaniyakh Sirii (na primere predpriyatiy pishchevoy promyshlennosti) [Improvement of Efficiency of Natural Illumination Systems in Industrial Buildings of Syria (exemplifi ed by food processing enterprises)]. Moscow, 2005.

Download

Shadowing effect of surrounding buildings in case of natural overhead lighting systems of civil buildings

Vestnik MGSU 9/2012
  • Stetskiy Sergey Vyacheslavovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architecture, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Larionova Kira Olegovna - Moscow State University of Civil Engineering (MGSU) senior lecturer, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 44 - 47

The problem of the shadowing effect produced by surrounding buildings onto the premises
of civil buildings that have natural overhead lighting systems is under consideration. The authors
demonstrate the need to take account of this effect in the course of illumination design according to
the construction legislation. The authors also project the efficiency improvement of new designs of
advanced overhead lighting elements.
The authors have also compiled an overview of the present-day status quo in the design of
natural lighting systems that incorporate overhead lighting elements, including roof monitors and
skylights used in modern urban design. Due to the need for maximal fl oor space, public buildings
(supermarkets, restaurants, entertainment centres, etc.), being restricted in height by specific urban
conditions, have to go underground - either entirely, or with only a few stories above the ground
level. This trend drives attention to overhead lighting systems as the only source of natural lighting
of the interior premises. Hence, the authors insist on the relevant need to elaborate a new approach
to the calculation of the daylight factor values in the premises that have overhead lighting systems
with account for shading and reflecting effects of surrounding buildings.

DOI: 10.22227/1997-0935.2012.9.44 - 47

References
  1. Ayzenberg Yu.B., edited by. Spravochnaya kniga po svetotekhnike [Reference Book on Lighting Engineering]. Moscow, BL Publ., 2008.
  2. Maklakova T.G., Nanasova S.M., Sharapenko V.G., Balakina A.E. Arkhitektura [Architecture]. Moscow, ASV Publ., 2004, 473 p.
  3. Maklakova T.G. Istoriya arkhitektury i stroitel’noy tekhniki [History of Architecture and Architectural Engineering]. Moscow, ASV Publ., 2003, Part 2, 256 p.
  4. Solov’ev A.K. Effektivnost’ verkhnego estestvennogo osveshcheniya proizvodstvennykh zdaniy [Efficiency of Natural Overhead Lighting of Industrial Buildings]. Moscow, 2011.
  5. Taylor L.H., Shafter D.H. Offi ce Design and Performance. Lighting Design and Application. May 1975.
  6. Code for Interior Lighting. The Illuminating Engineering Society, London, 1977.
  7. Solov’ev A.K. Fizika sredy [Physics of the Environment]. Moscow, ASV Publ., 2011, 352 p.
  8. Obolenskiy N.V. Arkhitekturnaya fi zika [Architectural Physics]. Moscow, Arkhitektura-S Publ., 2005, 448 p.
  9. Gusev N.M. Osnovy stroitel’noy fi ziki [Fundamentals of Building Physics]. Moscow, Stroyizdat Publ., 1975, 440 p.
  10. SNiP 23-05—95*. Estestvennoe i iskusstvennoe osveshchenie [Construction Norms and Regulations 23-05—95*. Natural and Artificial Lighting].
  11. SP 23-102—2003. Estestvennoe osveshchenie zhilykh i obshchestvennykh zdaniy [Construction Regulations 23-102-2003. Natural Lighting of Residential and Public Buildings].

Download

OPTIMIZATION OF GEOMETRICS OF LIGHT WELLS FOR MULTI-STOREY INDUSTRIAL BUILDINGS IN THE CONDITIONS OF SOUTHEAST CHINA

Vestnik MGSU 11/2012
  • Stetskiy Sergey Vyacheslavovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chen Guanglong - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 23 - 31

The authors consider problems of optimum height (or length) of light wells in multi-storey
industrial buildings in the hot and sunny climate of southeast China. The researches were based
on the multi-component data analysis that included the analysis of dimensions of light wells in plan
view, analysis of natural light that they delivered and the time period of the use of the artificial light in
the workrooms of the above industrial buildings. Conclusions were made concerning the efficiency
of light wells in the upper and pre-upper storeys of similar industrial buildings.
Particular attention must be driven to the quality of the internal microclimate, which accrues
importance in the extreme weather conditions like hot and sunny climates. In the course of multiple
years, the problem of development and maintenance of the favourable indoor environment has
been the subject of research performed by the leading experts in building physics. The researches
concerning hot climates are mainly based on the research of the lighting, thermal and insulation
conditions in the said premises and development of architectural and structural concepts and solutions
aimed to improve these conditions.

DOI: 10.22227/1997-0935.2012.11.23 - 31

References
  1. Solov’ev A.K. Fizika sredy [Environmental Physics]. Moscow, ASV Publ., 2011, 344 p.
  2. Gusev N.M. Osnovy stroitel’noy fiziki [Fundamentals of Building Physics]. Moscow, Stroyizdat Publ., 1975, 330 p.
  3. Solov’ev A.K. Effektivnost’ verkhnego estestvennogo osveshcheniya proizvodstvennykh zdaniy [Efficiency of Overhead Natural Lighting in Industrial Buildings]. Moscow, 2010, 72 p.
  4. Skat’ D.D. Kompleksnyy metod rascheta zenitnogo osveshcheniya zdaniy [Multi-component Method of Analysis of Overhead Lighting in Buildings]. Poltava, 1999, 20 p.
  5. Zemtsov V.A. Voprosy proektirovaniya i rascheta estestvennogo osveshcheniya pomeshcheniy cherez zenitnye fonari shakhtnogo tipa [Issues of Design and Analysis of Natural Lighting of Premises through Shaft–type Skylights]. Svetotekhnika [Illumination Engineering]. Moscow, 1990, no. 10, pp. 25—36.
  6. Solov’ev A.K. Polye trubchatye svetovody i ikh primenenie dlya estestvennogo osveshcheniya zdaniy [Hollow Tubular Light Conductors and Their Application for Natural Lighting of Buildings]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2007, no. 2, pp. 53—55.
  7. Stetskiy S.V., Chen Guanglong. Sozdanie kachestvennoy svetovoy sredy v pomeshcheniyakh proizvodstvennykh zdaniy dlya klimaticheskikh usloviy yugo-vostochnogo Kitaya [Development of a High-quality Illumination Environment in the Premises of Industrial Buildings in the Climatic Conditions of Southeast China]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 7, pp. 16—25.
  8. Aleksandrov Yu.P., Marantidi I.N., Solov’ev A.K., Stetskiy S.V. Proektirovanie svetoprozrachnykh konstruktsiy i estestvennogo osveshcheniya zdaniy [Design of Translucent Structures and Natural Lighting of Buildings]. Moscow, MISI Publ., 1984, 115 p.
  9. Liu Jianping. Building Physics. China Building Industry Press, 2009, 558 p.
  10. SNiP 23-05—95*. Estestvennoe i iskusstvennoe osveshchenie [Construction Norms and Regulations 23-05—95*. Natural and Artificial Lighting]. Moscow, Gosstroy Rossii publ., 2004, 27 p.
  11. SP 52.13330. Estestvennoe i iskusstvennoe osveshchenie. Aktualizirovannaya redaktsiya SNiP 23-05—95*. 2011. [Construction Rules SP 52.13330. Daylight and Artificial Lighting. Updated Version of Construction Norms and Regulations 23. 05.95*.2011. SP 52.13330.2011]. Moscow, Ministry of Regional Development, 2010, 75 p.
  12. Kondratenkov A.N., Solov’ev A.K., Stetskiy S.V., Khamidov K.Kh. Razrabotat’ kompleks meropriyatiy po uluchsheniyu svetovoy sredy v tselykh predpriyatiy Minlegproma Tadzhikskoy SSR s uchetom ekonomii energoresursov [Development of a Set of Actions Aimed at Improvement of the Lighting Environment at Industrial Enterprises of the Ministry of Textile Industry of the Tajik SSR with account for the Saving of Electricity]. Scientific Report compiled under Contract 102. Moscow, MISI Publ., 1986.

Download

Results 1 - 4 of 4