ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Natural light design in premises with roof natural lighting system with consideration of lighting effects of the surrounding housing

Vestnik MGSU 12/2014
  • Stetskiy Sergey Vyacheslavovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Larionova Kira Olegovna - Moscow State University of Civil Engineering (MGSU) senior lecturer, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 20-30

The article considers the problems connected with new offers on a daylight factor design in premises with roof natural lighting system with account of lighting effect of surrounding buildings. The offers for daylight design are based on a hypothesis of possible use of some design points for side natural lighting of interiors in the design of roof natural lighting. This is connected with a need to account for a lighting effect of neighborhood buildings. This effect must be considered in the case of lighting design for underground or sub-around buildings. These theoretical offers were confirmed with practical experiment results. The problem, discussed in the article has been stated and analyzed before by a number of domestic and foreign authors. These questions arose mainly because of the broad developing activity in the construction of underground and below-ground buildings and structures, mainly bound with public premises. The need of such development can be explained by the lack of vacant city areas, especially in the central parts. Moreover, the construction methods of such a development are much simpler, as compared with traditional construction technologies of above-ground objects. As for indoor lighting conditions in the underground and below-ground buildings, the only possible way to provide sufficient lighting of interiors is an implementation of roof lighting system in the form of skylights or monitors with one-side or two-side glazing. It is obvious, however, that these roof lighting units are influenced by shadowing effect of the surrounding buildings, which can decrease the incoming light flow to the interiors. This point is the main one, which forced the authors to investigate this scientific problem.

DOI: 10.22227/1997-0935.2014.12.20-30

References
  1. Stetskiy S.V., Larionova K.O. Zatenyayushchee vliyanie okruzhayushchey zastroyki pri sisteme verkhnego estestvennogo osveshcheniya grazhdanskikh zdaniy [Shadowing Effect of Surrounding Buildings in Case of Natural Overhead Lighting Systems of Civil Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 44—47. (In Russian)
  2. Zemtsov V.A. Voprosy proektirovaniya i rascheta estestvennogo osveshcheniya pomeshcheniy cherez zenitnye fonari shakhtnogo tipa [Issues of Design and Analysis of Natural Lighting of Premises through Shaft-type Skylights]. Svetotekhnika [Illumination Engineering]. Moscow, 1990, no. 10, pp. 25—36. (In Russian)
  3. Stetskiy S.V., Chen Guanglong. Sozdanie kachestvennoy svetovoy sredy v pomeshcheniyakh proizvodstvennykh zdaniy dlya klimaticheskikh usloviy yugo-vostochnogo Kitaya [Development of a High-quality Illumination Environment in the Premises of Industrial Buildings in the Climatic Conditions of Southeast China]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 7, pp. 16—25. (In Russian)
  4. Zemtsov V.A. Estestvennoe osveshchenie pomeshcheniy cherez zenitnye fonari shakhtnogo tipa [Natural Lighting of Premises through Roof Lights of a Vine-type]. Issledovanie po stroitel’noy svetotekhnike : sbornik nauchnykh trudov NIISF [Research Works on Structural Mechanics: Collection of Scientific Works of the Research Institute for Building Physics]. Moscow, 1981, pp. 28—31. (In Russian)
  5. Balkheeva V.A. Metodika rascheta estestvennogo osveshcheniya pomeshcheniy s uchetom sveta, otrazhennogo ot territoriy [Calculation Methods of Natural Illumination of Premises with Regard of the Light, Refl ected from a Territory]. Svetotekhnika [Light and Engineering]. 1990, no. 10, pp. 32—35. (In Russian)
  6. Solov’ev A.K. Proektirovanie estestvennogo osveshcheniya zdaniy s ispol’zovaniem prostranstvennykh kharakteristik svetovogo polya [Design of Natural Lighting of Buildings with the Use of Spatial Characteristics of Light Field]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 453—460. (In Russian)
  7. Brotash L., Uilson M. Raschet pokazateley estestvennogo osveshcheniya [Calculation of Natural Lighting Factors]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 44—47. (In Russian)
  8. Mokhel’nikova Y. Estestvennoe osveshchenie i fonari verkhnego sveta [Natural Lighting and Roof Lights]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 26—30. (In Russian)
  9. Solov’ev A.K. Raspredelenie yarkosti po nebosvodu i ego uchet pri proektirovanii estestvennogo osveshcheniya zdaniy [Sky Luminance Distribution and Account for it in the Natural Lighting Design of Buildings]. Svetotekhnika [Light and Engineering]. 2008, no. 6, pp. 18—22. (In Russian)
  10. Bakharev D.V., Zimnovich I.A. K teoreticheskomu analizu empiricheskoy yarkosti fasadov [To a Theoretical Analysis of Empirical Luminance of Facades]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 10—17. (In Russian)
  11. Egorchenkov V.A. Opredelenie yarkosti zemnoy poverkhnosti pri raschete estestvennogo osveshcheniya zdaniy [Luminance of a Ground Surfaces Determination in the Calculation of Natural Lighting of Buildings]. Svetotekhnika [Light and Engineering]. 2008, no. 3, pp. 56—57. (In Russian)
  12. Slukin V.M., Simakova E.S. Problemy estestvennogo osveshcheniya pomeshcheniy v uplotnennoy gorodskoy zastroyke [Problems of Natural Illumination of Premises in Dense Development]. Akademicheskiy vestnik UralNIIproekt RAASN [Academic Proceedings of the Ural Scientific, Research and Design Institute of the Russian Academy of Architecture and Construction Sciences]. 2010, no. 2, pp. 56—60. (In Russian)
  13. Slukin V.M., Smirnov L.N. Obespechenie normirovannykh usloviy estestvennogo osveshcheniya zhilykh zdaniy v uplotnennoy gorodskoy zastroyke [Ensuring the Normalized Conditions of Natural Illumination of Residential Buildings in Dense Urban Development]. Akademicheskiy vestnik UralNIIproekt RAASN [Academic Proceedings of the Ural Scientific, Research and Design Institute of the Russian Academy of Architecture and Construction Sciences]. 2011, no. 4, pp. 75—77. (In Russian)
  14. Tregenza P.R. The Daylight Factor and Actual Illuminance Ratios. Lighting Research and Technology. 1980, vol. 12, no. 2, pp. 64—68. DOI: http://dx.doi.org/10.1177/096032718001200202.
  15. Tregenza P.R. Measured and Calculated Frequency Distributions of Daylight Illuminance. Lighting Research and Technology. 1986, vol. 18, no. 2, pp. 71—74. DOI: http://dx.doi.org/10.1177/096032718601800202.
  16. Brotas L., Wilson M. Daylight in Urban Canyons: Planning in Europe. PLEA2006 The 23rd Conference on Passive and Low Energy Architecture. Geneva, Switzerland, 6—8 September 2006, Proc. II, pp. 207—212.
  17. Lynes J.A. A Sequence for Daylighting Design. Lighting Research and Technology. 1979, vol. 11, no. 2, pp. 102—106. DOI: http://dx.doi.org/10.1177/14771535790110020101.
  18. Cuttle C. Sumner’s Principle: A Discussion. Lighting Research and Technology. 1991, no. 2, pp. 99—106.
  19. Lay S.D. Appraisal of the Visual Environment. L.E.D. Lighting Review. 1970, pp. 129—138.
  20. Irens A.N. Light and Productivity. Transactions of the Illumination Engineering Society. London, 1960, vol. 25, no. 2, pp. 53—68.
  21. Solov’ev A.K. Polye trubchatye svetovody: ikh primenenie dlya estestvennogo osveshcheniya zdaniy i ekonomiya energii [Hollow Tubular Light Conductors: Their Application for Natural Lighting of Buildings and Saving of Energy]. Svetotekhnika [Light and Engineering]. 2011. No. 5. C. 41—47. (In Russian)

Download

SAFETY OF LIGHT-CLIMATIC ENVIRONMENT DURING CONSTRUCTION IN RESTRAINED URBAN CONDITIONS

Vestnik MGSU 8/2017 Volume 12
  • Rimshin Vladimir Ivanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) , Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Kuzina Ekaterina Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) , Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 917-923

The article considers the issues of safety of light-climatic environment during construction in restrained urban conditions. The purpose of the research is studying the methods of creating and designing urban development with improved technical and economic indicators which creates comfortable living conditions in an urban development. The sample calculation of insolation and natural lighting in a residential building is given, taking into account all the rules and regulations, the influence of a context area, its location and dimensions. According to the results of the study, natural lighting and duration of insolation in the premises of the residential building taken, fully comply with the requirements of the standards for natural lighting and insolation of residential buildings, which should ensure safe and comfortable living conditions. The given example of calculation can be used to enhance insolation mode and natural lighting in existing dense urban development with the provision of all the rules and regulations.

DOI: 10.22227/1997-0935.2017.8.917-923

Download

Results 1 - 2 of 2