RESEARCH OF BUILDING MATERIALS

Optimization of cement composites with the use of fillers from the Chechen Republic fields

Vestnik MGSU 12/2014
  • Balatkhanova Elita Mahmudovna - Ogarev Mordovia State University (MGU im. Ogareva) doctoral candidate, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bazhenov Yuriy Mikhailovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Binders and Concrete Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 31-02, 31-03, 31-01; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitina Elena Aleksandrovna - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Highways and Special Engineering Structures, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rodin Alexander Ivanovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Eremin Aleksey Vladimirovich - Moscow State University of Civil Engineering (MGSU) head, laboratory of Physical and Chemical Analysis, Scientific and Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Adamtsevich Aleksey Olegovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, head, Principal Regional Center of Collective Use of Scientific Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 656-14-66; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 121-130

The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

DOI: 10.22227/1997-0935.2014.12.121-130

References
  1. Afanas’ev N.F., Tseluyko M.K. Dobavki v betony i rastvory [Additives in Concrete and Solutions]. Kiev, Budivel’nyk Publ., 1989, 128 p. (In Russian)
  2. Dvorkin L.I., Solomatov V.I., Vyrovoy V.N., Chudnovskiy S.M. Tsementnye betony s mineral’nymi napolnitelyami [Cement Concretes with Mineral Fillers]. Kiev, Budivel’nyk Publ., 1991, 136 p. (In Russian)
  3. Lazarev A.V., Kaznacheev S.V., Erofeeva I.V., Rodina N.G. Vliyanie vida napolnitelya na deformativnost’ epoksidnykh kompozitov v usloviyakh vozdeystviya model’noy bakterial’noy sredy [Infl uence of a Type of a Filler on Deformability of Epoxy Composites in the Conditions of Infl uence of Model Bacterial Environment]. Razrabotka effektivnykh aviatsionnykh, promyshlennykh, elektrotekhnicheskikh i stroitel’nykh materialov i issledovanie ikh dolgovechnosti v usloviyakh vozdeystviya razlichnykh ekspluatatsionnykh faktorov : materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii 19—20 dekabrya 2013 g. [Materials of the International Scientific and Technical Conference: Development of Effective Aviation, Industrial, Electrotechnical and Construction Materials and Research of their Durability in the Conditions of the Influence of Various Operational Factors]. Saransk, Mordovia State University Publ., 2013, pp. 188—194. (In Russian)
  4. Panteleev A.S., Kolbasov V.N., Savin E.S. Karbonatnye porody — mikronapolniteli dlya tsementa [Carbonate Breeds — Microfillers for Cement]. Trudy MKhTI im. D.I. Mendeleeva [Works of D. Mendeleyev Institute of Chemical Technology of Moscow]. 1964, no. 45, pp. 19—24. (In Russian)
  5. Solomatov V.I., Takhirov M.K., Takher Shakh Md. Intensivnaya tekhnologiya betona [Intensive Technology of Concrete]. Moscow, Stroyizdat Publ., 1989, 284 p. (In Russian)
  6. Bazhenov Yu.M. Novomu veku — novye betony [New Concretes to the New Age]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2000, no. 2 (11), no. 10. (In Russian)
  7. Degtyareva M.M. Tekhnologiya i svoystva betona s binarnym napolnitelem «kvarts — izvestnyak» [Technology and Properties of concrete with Binary Fillers "Quartz-Limestone"]. Theses for the Dissertation of the Candidate of Technical Sciences. Moscow, 1995, 19 p. (In Russian)
  8. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V., Bogatov A.D., Astashov A.M., Korotaev S.A., Nikitin L.V. Silikatnye i polimersilikatnye kompozity karkasnoy struktury rolikovogo formirovaniya [Silicate and Polymer-Silicate Composites of the Truss Structure of Roller Formation]. Moscow, ASV Publ., 2009, 160 p. (In Russian)
  9. Krasnyy I.M. O mekhanizme povysheniya prochnosti betona pri vvedenii mikronapolnitelya On the Method of Concrete Strength Increase in Case of Microfi ller Introduction]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1987, no. 5, pp. 10—11. (In Russian)
  10. Ovcharenko F.D., Solomatov V.I., Kazanskiy V.M. O mekhanizme vliyaniya tonkomolotykh dobavok na svoystva tsementnogo kamnya [On the Infl uence Mechanism of Floured Additives on Cement Stone Properties]. Doklady AN SSSR [Reports of Academy of Sciences of the USSR]. 1985, vol. 284, no. 2, pp. 289—403. (In Russian)
  11. Solomatov V.I. Razvitie polistrukturnoy teorii kompozitsionnykh stroitel’nykh materialov [Development of the Polystructural Theory of Composite Construction Materials]. Izvetiya vuzov. Stroitel’stvo i arkhitektura [Proceedings of Institutions of Higher Education. Construction and Architecture]. 1985, no. 8, pp. 58—64. (In Russian)
  12. Basin E.V., editor. Rossiyskaya arkhitekturno-stroitel’naya entsiklopediya. T. 1. Stroyindustriya, stroitel’nye materialy, tekhnologiya i organizatsiya proizvodstva rabot. Stroitel’nye mashiny i oborudovanie [Russian architectural and construction encyclopedia. Vol. 1. Construction Industry, Construction Materials, Technology and Works Management]. Moscow, VNIINTPI Publ., 1995, vol. 1, 495 p. (In Russian)
  13. Adamtsevich A.O., Pustovgar A.P., Eremin A.V., Pashkevich S.A. Vliyanie formiata kal’tsiya na gidratatsiyu tsementa s uchetom fazovogo sostava i temperaturnogo rezhima tverdeniya [Investigation of the Effect of Calcium Formate on Hydration Process of Cement with Account for the Phase Composition and Temperature Mode of Hardening]. Stroitel’nye materialy [Construction Materials]. 2013, no. 7, pp. 59—61. (In Russian)
  14. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirovanii fazovogo sostava struktury tsementnogo kamnya [Time Factor in Formation of Phase Structure of a Cement Stone]. Regional’naya arkhitektura i stroitel’stvo [Regional architecture and construction]. 2013, no. 2, pp. 26—31. (In Russian)
  15. Barbara Lothenbach, Gwenn Le Saout, Mohsen Ben Haha, Renato Figi, Erich Wieland Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research. 2012, vol. 42, no. 2, pp. 410—423. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.11.008.
  16. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The Early Hydration of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow from QXRD. Cement and Concrete Research, 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.
  17. Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat, George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas Mechanisms of Cement hydration. Cement and Concrete Research. December 2011, vol. 41, no. 12, pp. 1208—1223. DOI: 10.1016/j.cemconres.2010.09.011.
  18. Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cement and Concrete Research. 2011, vol. 41, no. 11, pp. 1104—1111.
  19. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modified Cement Systems, Hardening over the Temperature Range from +22°C to –10°C. Applied Mechanics and Materials. 2014, vols. 584—585, pp. 1659—1664.
  20. Sabine M. Leisinger, Barbara Lothenbach, Gwenn Le Saout, C. Annette Johnson. Thermodynamic Modeling of Solid Solutions Between Monosulfate and Monochromate 3CaO Al2O3 Ca[(CrO4)x(SO4)1-x] nH2O. Cement and Concrete Research. 2012, vol. 42, No. 1, pp. 158—165. DOI: 10.1016/j.cemconres.2011.09.005.

Download

Obtaining and physical mechanical properties of cement composites with the use of fillers and mixing water from the Chechen Republic fields

Vestnik MGSU 12/2014
  • Erofeev Vladimir Trofimovich - Ogarev Mordovia State University (MGU im. Ogareva) Doctor of Technical Sciences, Professor, Chair, Department of Construction Materials and Technologies, dean, Department of Architecture and Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bazhenov Yuriy Mikhailovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Binders and Concrete Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14, ext. 31-02, 31-03, 31-01; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Balatkhanova Elita Mahmudovna - Ogarev Mordovia State University (MGU im. Ogareva) doctoral candidate, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitina Elena Aleksandrovna - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Associate Professor, Department of Highways and Special Engineering Structures, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Emel’yanov Denis Vladimirovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rodin Alexander Ivanovich - Ogarev Mordovia State University (MGU im. Ogareva) Candidate of Technical Sciences, Senior Lecturer, Department of Economy and Management in Construction, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (8342) 47-40-19; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Karpushin Sergey Nikolaevich - Ogarev Mordovia State University (MGU im. Ogareva) postgraduate student, Department of Construction Materials and Technologies, Ogarev Mordovia State University (MGU im. Ogareva), 68 Bol’shevistskaya str., Saransk, 430005, Russian Federation; +7 (987) 692-36-98; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 141-151

Improving physical mechanical and operational properties of concretes and other composite materials is one of the most important tasks in construction material science. At the present time various methods are applied for that, which includes the use of additives, composite binders, activated mixing water, etc. Composite construction materials based on cement binders with mineral additives are widelu used, because they possess improved physical mechanical and technological properties. Implementation of additives improve placeability and nonsegregation factors of concrete and mortar mixes, lead to compaction of concrete and mortars structure. The additives substantially lower heat generation of concretes, which is of great importance in concrete casting of large structures. The article presents the results of experimental studies of cement composites filled with powders of rocks and mixable with activated water from the deposits of the Chechen Republic. The soundness of cement compositions with the additives of mountain and river limestone, sandstone and quartz sand was established. The results of experimental studies on establishing the effect of fine and coarse aggregate on strength formation of cement composites activated by water mixing were presented.

DOI: 10.22227/1997-0935.2014.12.141-151

References
  1. Bazhenov Yu.M., Fedosov S.V., Erofeev V.T., Matvievskiy A.A., Mitina E.A., Emel’yanov D.V., Yudin P.V. Tsementnye kompozity na osnove magnitno- i elektrokhimicheski aktivirovannoy vody zatvoreniya [Cement Composites on the Basis of the Magnetic and Electrochemical Activated Mixing Water]. Saransk, Mordovia University Publ., 2011, 128 p. (In Russian)
  2. Bazhenov Yu.M., Fomichev V.T., Erofeev V.T., Fedosov S.V., Matvievskiy A.A., Osipov A.K., Emel’yanov D.V., Mitina E.A., Yudin P.V. Teoreticheskoe obosnovanie polucheniya betonov na osnove elektrokhimicheski- i elektromagnitnoaktivirovannoy vody zatvoreniya [Theoretical Justification of Obtaining Concretes on a Basis of Electrochemical and electromagnetically-driven Water]. Internet-Vestnik VolgGASU. Seria: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Polytematic]. 2012, vol. 2 (22), p. 4. Available at: http://vestnik.vgasu.ru/attachments/1_Bazhenov-Fomichev-2012_2(22).pdf/. Date of access: 15.07.2014. (In Russian)
  3. Erofeev V.T., Fomichev V.T., Emel’yanov D.V., Rodin A.I., Eremin A.V. Vliyanie aktivirovannoy vody zatvoreniya na strukturoobrazovanie tsementnykh past [Infl uence of the Activated Water on Structurization of Cement Pastes]. Vestnik Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, vol. 30 (49), pp. 179—183. (In Russian)
  4. Kalashnikov V.I., Erofeev V.T., Moroz M.N., Troyanov I.Yu., Volodin V.M., Suzdal’tsev O.V.Nanogidrosilikatnye tekhnologii v proizvodstve betonov [Nanohydrosilicate Technologies for Production of Concretes]. Stroitel’nye materialy [Construction Materials]. 2014, no. 5, pp. 88—91. (In Russian)
  5. Jung V.N. Osnovy tekhnologii vyazhushchikh veshchestv [Bases of the Technology of Binding Substances]. Moscow, Gosstroyizdat Publ., 1951, pp. 509—511. (In Russian)
  6. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheynfel’d A.V., Kardumyan G.S., Kiseleva Ya.A., Prigozhenko O.V. Modifi tsirovannye betony novogo pokoleniya v sooruzheniyakh MMDTs «Moskva-Siti» [Modifi ed Concretes of New Generation in the Constructions of Business Centre “Moscow City”]. Stroitel’nye materialy [Construction Materials]. 2006, no. 10, pp. 13—18. (In Russian)
  7. Entin Z.B., Khomich V.Kh., Ryzhov L.K. i dr. Ekonomiya tsementa v stroitel’stve [Economy of Cement in Construction]. Moscow, Stroyizdat Publ., 1985, 222 p. (In Russian)
  8. Takhirov M.K. Rol’ prirody poverkhnosti v protsessakh strukturoobrazovaniya tsementnoy kompozitsii s voloknistym napolnitelem [Role of the Surface Nature in the Processes of Structurization of Cement Composition with a Fibrous Filler]. MIIT. Trudy [Moscow State University of Railway Engineering. Works]. Vyp. 902. Novoe v stroitel'no materialovedenii : mezhvuzovskiy sbornik [No. 902. New in Construction Material Science : Interuniversity Collection]. V.I. Solomatov, editor . Moscow, MIIT Publ., 1997, pp. 48—51. (In Russian)
  9. Adamtsevich A.O., Pustovgar A.P., Eremin A.V., Pashkevich S.A. Issledovanie vliyaniya formiata kal’tsiya na protsess gidratatsii tsementa s uchetom fazovogo sostava i temperaturnogo rezhima tverdeniya [Research of the Infl uence of Calcium Formate on the Process of Cement Hydration with Account for the Phase Structure and Temperature Mode of Curing]. Stroitel’nye materialy [Construction Materials]. 2013, no. 7, pp. 59—62. (In Russian)
  10. Makridin N.I., Tarakanov O.V., Maksimova I.N., Surov I.A. Faktor vremeni v formirovanii fazovogo sostava struktury tsementnogo kamnya [Time Factor in the Formation of Phase Composition of a Cement Stone Structure]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2013, no. 2, pp. 26—31. (In Russian)
  11. Zozulya P.V. Karbonatnye porody kak zapolniteli i napolniteli, v tsementakh, tsementnykh rastvorakh i betonakh [Carbonate Breeds as Aggregates and Fillers, in Cements, Cement Mortars and Concretes]. Giprotsement-nauka [Giprotsement Science]. Available at http://www.giprocement.ru/about/articles.html/p=25/. Date of access: 06.10.2009. (In Russian)
  12. Chekhov A.P., Sergeev A.M., Dibrov G.D. Spravochnik po betonam i rastvoram [Reference Book on Concretes and Solutions]. 3rd edition, revised and enlarged. Kiev, Budivel’nik Publ., 1983, pp. 34—35. (In Russian)
  13. Lothenbach B., Le Saout G., Ben Haha M., Figi R., Wieland E. Hydration of a lowalkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research. 2012, vol. 42, no. 2, pp. 410—423. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.11.008.
  14. Jansen D., Goetz-Neunhoeffer F., Lothenbach B., Neubauer J. The Early Hydration of Ordinary Portland Cement (OPC): An Approach Comparing Measured Heat Flow with Calculated Heat Flow from QXRD. Cement and Concrete Research. 2012, vol. 42, no. 1, pp. 134—138. DOI: http://dx.doi.org/10.1016/j.cemconres.2011.09.001.
  15. Jeffrey W. Bullard, Hamlin M. Jennings, Richard A. Livingston, Andre Nonat, George W. Scherer, Jeffrey S. Schweitzer, Karen L. Scrivener, Jeffrey J. Thomas. Mechanisms of Cement Hydration. Cement and Concrete Research. 2011, vol. 41, no. 12, pp. 1208—1223. DOI: http://dx.doi.org/10.1016/j.cemconres.2010.09.011.
  16. Nguyen Van Tuan, Guang Ye, Klaas van Breugel, Oguzhan Copuroglu. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cement and Concrete Research. 2011, vol. 41, no. 11, pp. 1104—1111.
  17. Pashkevich S., Pustovgar A., Adamtsevich A., Eremin A. Pore Structure Formation of Modified Cement Systems, Hardening over the Temperature Range from +22°C to –10°C. Applied Mechanics and Materials. 2014, vols. 584—585, pp. 1659—1664.
  18. Sabine M. Leisinger, Barbara Lothenbach, Gwenn Le Saout, C. Annette Johnson. Thermodynamic Modeling of Solid Solutions Between Monosulfate and Monochromate 3CaO—Al2O3—Ca[(CrO4)x(SO4)1-x]?nH2O. Cement and Concrete Research. 2012, vol. 42, pp. 158—165. DOI: 10.10.16/j.cemcoures.2011.09.005.
  19. Stork Yu. Teoriya sostava betonnoy smesi [Theory of Concrete Mix Composition]. Transl. from Slovakian by M.A. Smyslova. Leningrad, Stroyizdat Publ., 1971, 238 p. (In Russian)
  20. Hewlett P. Lea’s Chemistry of Cement and Concrete. Butterworth-Heinemann, 2003. 1092 p.

Download

PECULIAR PROPERTIES OF STRUCTURAL FORMATION OF CEMENT COMPOSITES IN THE PRESENCE OF FUELEROID TYPE CARBON NANOPARTICLES

Vestnik MGSU 7/2017 Volume 12
  • Pukharenko Yuriy Vladimirovich - Saint-Petersburg State University of Architecture and Civil Engineering (SPSUASU) Doctor of Technical Sciences, Professor, Head of the Department of Building Materials Technology and Metrology, corresponding member of Russian Academy of Architecture and Construction Sciences, Saint-Petersburg State University of Architecture and Civil Engineering (SPSUASU), 4 2nd Krasnoarmeiskaya st., Saint-Petersburg, 190005, Russian Federation.
  • Ryzhov Dmitriy Igorevich - Saint-Petersburg State University of Architecture and Civil Engineering (SPSUASU) Assistant, Department of Building Materials Technology and Metrology, Saint-Petersburg State University of Architecture and Civil Engineering (SPSUASU), 4 2nd Krasnoarmeiskaya st., Saint-Petersburg, 190005, Russian Federation.
  • Staroverov Vadim Dmitrievich - Saint-Petersburg State University of Architecture and Civil Engineering (SPSUASU) Candidate of Technical Sciences, Associate Professor of the Department Building Materials Technology and Metrology, Saint-Petersburg State University of Architecture and Civil Engineering (SPSUASU), 4 2nd Krasnoarmeiskaya st., Saint-Petersburg, 190005, Russian Federation.

Pages 718-723

The paper deals with the application of fulleroid carbon nanoparticles (FCN) for the cement com-posites modification. In particular, the thermokinetic analysis was performed to assess the change in the rate and completeness of the cement hydration when the nanomodifier was introduced into it. The study of exothermic heterogeneous interactions and thermal effects in the binder - water - nanomodifier system allows one to estimate the hydration rate and depth and to assess the degree of nanomodifier’s influence. The conducted studies revealed the increase in the hydration temperature when carbon nanoparticles are introduced into the cement dough, while the induction period is prolonged, that indicates a more complete course of the reactions. It is confirmed by the results of qualitative X-ray structural analysis. The dynamics of decrease in calcium silicate peaks characterizes the completeness of hydration and binding of portlandite, that explains the increase in the modified cement stone strength. Microstructural analysis allows to detect the structure characteristic of control samples with a large number of large chaotically located crystals, the bulk of which is formed on the first day of solidification. Under the same conditions, the modification of the cement stone contributes to the creation of the more dense spatial structure consisting of small crystalline hydrate formations. All that process positively influences the formation of the rigid matrix with a smaller number of pores, which determines the in-crease in strength and durability of cement stone and concrete on its basis.

DOI: 10.22227/1997-0935.2017.7.718-723

Download

Results 1 - 3 of 3