SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Environmental assessment of a city on the model of energy-ecological efficiency

Vestnik MGSU 12/2014
  • Kuzovkina Tat’yana Vladimirovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Construction of the Objects of Thermal and Nuclear Power, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 781-80-07; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 172-181

This article gives an overview of the analytical methodology for assessing the environmental safety in construction, the existing government programs in energy saving, and the analysis of the actual state of the investigated problem, proposed a method of assessment of environmental safety efficiency criteria of a city. The analysis is based on the data on housing and communal services of the City of Moscow. As a result of the consideration of the government programs and methods of assessing the environmental security in construction the conclusion was made that none of the programs reviewed and non of the methods include consideration of the relationship between environmental parameters of environmental security and energy efficiency (indicators of them are considered separately from each other). In order to determine the actual state of environmental safety analytical review was performed of energy efficiency programs of the government in Moscow and the methods of assessing the environmental safety of a construction. After considering a methodology for assessing the environmental safety of a construction, the author proposes to use the model for determining the indicator of efficiency of the city to ensure the environmental safety of the processes of life-support of the city, which takes into account the dependence of the parameters of environmental safety and energy efficiency. The author describes the criteria for selecting thr data on energy and environmental efficiency of the city. The article shows the sequence to identify the criteria for determining the indicator of efficiency of the city. In the article the author presents the results of ecological assessment of Moscow on the energy-ecological efficiency model, using the model defined performance indicators of the city to ensure environmental safety processes of life support of the city. The model takes into account the dependence of environmental safety parameters, environmental and energy efficiency. The correlation analysis of the effectiveness of the city of Moscow, the graphs for the regression assessment models of the data are described. The coefficient of efficiency indicators correlation of city support and the coefficient of life safety in the city are calculated. Performance indicator for Moscow in 2009-2012 is defined, which reflects the dependence of the processes of life support and life sustenance of the city. The proposed approach to the assessment of environmental safety may be used in the development of governmental programs on energy saving, as well as in the preparation of regulatory documents.

DOI: 10.22227/1997-0935.2014.12.172-181

References
  1. Korolevskiy K.Yu., Slesarev M.Yu. Sozdanie i perspektivy razvitiya kafedry MGSU «Tekhnicheskoe regulirovanie» [Formation and prospects of development of the Department of Civil Engineering Technical Regulation]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2008, no. 4, pp. 55—57. (In Russian)
  2. Negrebov A.I., Slesarev M.Yu., Telichenko V.I. Upravlenie proektami rekonstruktsii ob”ektov stroitel’stva po ekologicheskim trebovaniyam [Management of Reconstruction Projects of Construction Objects Accoeding to Ecological Requirements]. Mekhanizatsiya stroitel’stva [Mechanization of Construction]. 2002, no. 6, pp. 10—12. (In Russian)
  3. Energosberezhenie v gorode Moskve : Gosudarstvennaya programma goroda Moskvy na 2012—2016 gg. i na perspektivu do 2020 g. [Energy Saving in Moscow : State Program of Moscow City in 2012—2016 and Up to 2020]. Vestnik Mera i Pravitel’stva Moskvy [Proceedings of Moscow Major and Government]. 2011, no. 57, pp. 6—133. (In Russian)
  4. Prikaz Minenergo Rossii ot 30 iyunya 2014 g. ¹ 399 «Ob utverzhdenii metodiki rascheta znacheniy tselevykh pokazateley v oblasti energosberezheniya i povysheniya energeticheskoy effektivnosti, v tom chisle v sopostavimykh usloviyakh» [Order Russian ministry of Energy from 30.06.2014 no. 399 “Approving the Methods of Calculating the Targets Values in the Field of Energy Saving and Energy Efficiency, Including in Comparable Conditions]. LEKS-Konsalting. Available at: http://www.g-k-h.ru/upload/prikaz399.rtf. Date of access: 01.03.2013. (In Russian)
  5. Podprogramma energosberezheniya i povysheniya energeticheskoy effektivnosti Departamenta zhilishchno-kommunal’nogo khozyaystva i blagoustroystva goroda Moskvy [Sub-Programme on Energy Saving and Energy Efficiency Increase of the Department of Housing and Communal Services and Public Works of the City of Moscow]. Vestnik Mera i Pravitel’stva Moskvy [Proceedings of Moscow Major and Government]. 2008, no. 63, pp. 108—200. (In Russian)
  6. Polozhenie po provedeniyu energeticheskikh obsledovaniy organizatsiy RAO «EES Rossii» RD 153-34.9.09.162-00 [Regulations for Conducting Energy Investigations of Organizations of RAO “UES of Russia” RD 153-34.9.09.162-00]. Moscow, RAO «EES Rossii» Publ., 2000, 28 p. (In Russian)
  7. Fedorov M.P., Bocharov Yu.N., Porshnev G.P., Schislyaev S.M., Matveev I.A., Skvortsova I.V., Petkova A.P., Malinovskiy D.N., Dzektser N.N.N., Shkola A.V., Mityakov A.V. Patent 2439625 RF, MPK G01W. Sposob kompleksnogo energoekologicheskogo obsledovaniya energeticheskikh i promyshlennykh ob”ektov. ¹ 2010102375/28, Zayavl. 25.01.2010, opubl. 10.01.2012. Byul. ¹ 1 [Patent 2439625 RF, MPK G01W. Method of integrated energy-ecological survey of power and industrial facilities. No. 2010102375/28, appl. 25.01.2010, publ. 10.01.2012. Bulletin no. 1]. Patent Holder FGBOU VPO «SPbGPU», 16 p. (In Russian)
  8. BREEAM International New Construction Technical Manual: SD5075 Version: 2013.03/03/2014. Available at: http://www.breeam.org/page.jsp?id=109. Date of access: 01.03.2013.
  9. Foundations of the Leadership in Energy and Environmental Design, Environmental Rating System, A Tool for Market Transformation. U.S. Green Building Council. 2006, August. Available at: http://www.usgbc.org/Docs/Archive/General/Docs2039.pdf/. Date of access: 01.03.2013.
  10. Kukadia V., Upton S., Hall D. Control of Dust from Construction and Demolition Activities. RE Press, 2003. Available at: http://products.ihs.com/cis/Doc.aspx?AuthCode=&DocNum=262929. Date of access: 01.03.2013.
  11. Kukadia V., Upton S., Grimwood C. Controlling Particles, Vapour and Noise Pollution from Construction Sites — Set of Five Pollution Control Guides. BRE Press, 2003. Available at: http://www.brebookshop.com/details.jsp?id=144548. Date of access: 01.03.2013.
  12. Guidelines on Energy Efficiency of Lift & Escalator Installations. EMSD, 2007. Available at: http://www.emsd.gov.hk/emsd/e_download/pee/Guidelines_on_Energy_Efficiency_of_LiftnEsc_Installations_2007.pdf. Date of access: 01.03.2013.
  13. Nipkow J., Schalcher M. Energy Consumption and Efficiency Potentials of Lifts. Swiss Agency For Efficient Energy Use S.A.F.E. Available at: http://www.arena-energie.ch/d/_data/EEDAL-ID131_Lifts_Nipkow.pdf. Date of access: 01.03.2013.
  14. Zaytseva T.V. Ekologicheskaya bezopasnost’ ob”ektov zhilishchno-kommunal’nogo khozyaystva. Uchet vliyaniya meropriyatiy po energosberezheniyu i energoeffektivnosti [Environmental Safety of the Objects of Housing and Communal Services. Accounting for the Effects of Energy Saving and Energy Efficiency Measures]. Stroitel’stvo — formirovanie sredy zhiznedeyatel’nosti : sbornik dokladov XVI Mezhdunarodnoy mezhvuzovskoy nauchno-prakticheskoy konferentsii studentov, magistrantov, aspirantov i molodykh uchenykh (24—26 aprelya 2013 g., Moskva). Minobrnauki RF, MGSU [Construction — Forming Living Environment: Book of Reports Of The Sixteenth International Interuniversity Scientific And Practical Conference Of Students, Master And Postgraduate Students And Young Scientists (April, 24—26, 2013)]. Ministry of Education and Science of the Russian Federation, MGSU]. Moscow, MGSU Publ., 2013, no. 3 (6), pp. 596—601. (In Russian)
  15. Zaytseva T.V. Ekologicheskaya bezopasnost’ prirodno-tekhnicheskikh sistem, formiruemykh ob”ektami promyshlennogo, grazhdanskogo i gorodskogo stroitel’stva stroitel’stva [Environmental Security of Natural-Technical Systems Formed by Industrial, Civil and Urban Construction Objects]. Nauchnyy potentsial regionov na sluzhbu modernizatsii : mezhvuzovskiy sbornik nauchnykh statey [Scientific Potential of the Regions on Service of Modernization: Interuniversity Collection of Scientific Articles]. Astrakhan’, GAOU AO VPO «AISI» Publ., 2013, vol. 1, pp. 39—42. (In Russian)
  16. Zaytseva T.V. Rol’ energosberezheniya i energoeffektivnosti v zhilishchno-kommunal’nom khozyaystve goroda Moskvy [Energy Saving and Energy Efficiency Role in Housing and Communal Services of the City of Moscow]. Integratsiya, partnerstvo i innovatsii v stroitel’noy nauke i obrazovanii : sbornik dokladov Mezhdunarodnoy nauchnoy konferentsii [Integration, Partnership and Innovations in Construction Science and Education: Proceedings of the International Scientific Conference]. Moscow, MGSU Publ., 2013, pp. 351—353. (In Russian)
  17. Doklad rukovoditelya Departamenta prirodopol’zovaniya i okhrany okruzhayushchey sredy Moskvy A.O. Kul’bachevskogo na Kollegii Departamenta, posvyashchennoy itogam raboty v 2012 godu i planam na 2013 god [Report of the Head of the Department of Natural Resources Management and Environmental Protection of Moscow A.O. Kul’bachevskiy on the Department Board Dedicated to the Results of the Work in 2012 and Plans for 2013]. Available at: http://www.dpioos.ru/eco/ru/report_result/o_8635. Date of access: 01.03.2013. (In Russian)
  18. Doklad o sostoyanii okruzhayushchey sredy v gorode Moskve v 2011 godu [Report on the State of the Environment in the City of Moscow in 2011]. Available at: http://www.dpioos.ru/eco/ru/report_result/o_3992. Date of access: 01.11.2012. (In Russian)
  19. Doklad rukovoditelya Departamenta prirodopol’zovaniya i okhrany okruzhayushchey sredy goroda Moskvy A.O. Kul’bachevskogo «Ob osnovnykh napravleniyakh, rezul’tatakh deyatel’nosti Departamenta prirodopol’zovaniya i okhrany okruzhayushchey sredy goroda Moskvy v 2011 godu i zadachakh na 2012 god» [Report of the Head of the Department of Natural Resources Management and Environmental Protection of Moscow A.O. Kul’bachevskiy “On the Main Directions, Results of the work of the Department of Natural Resources and Environmental Protection of the City of Moscow in 2011 and tasks for 2013”]. Available at: http://www.dpioos.ru/eco/ru/report_result/o_4156. Date of access: 01.11.2012. (In Russian)
  20. Gosudarstvennaya programma goroda Moskvy «Energosberezhenie v gorode Moskve» na 2011, 2012—2016 gg.» [The State Program of Moscow “Energy Efficiency in Moscow in 2011, 2012—2016”]. Available at: http://dgkh.mos.ru/the-state-program/realizationof-the-state-programs/moscow-state-program-energosberezhanie-in-the-city-of-moscow-onthe-2011-2012-2016.php?. Date of access: 01.03.2013. (In Russian)
  21. Gosudarstvennaya programma Rossiyskoy Federatsii «Energoeffektivnost’ i razvitie energetiki» [The State Program of the Russian Federation “Energy Efficiency and Energy Development”]. Vestnik Mera i Pravitel’stva Moskvy [Proceedings of Moscow Major and Government]. 2014, no. 23, 160 p. (In Russian)

Download

METHODOLOGY OF IDENTIFICATION OF THE DRAINAGE NORM FOR AREASEXPOSED TO FLOODING

Vestnik MGSU 8/2013
  • Voronov Yuriy Viktorovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Water Discharge and Water Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shirkova Tat'yana Nikolaevna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Discharge and Water Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 131-136

The authors argue that drainage norms depending on the functional use of territories must be considered as the first step in the design of flood protection systems. Further, calculation of the drainage norm should be performed based on the extent of the flooding vulnerability of areas. Any designer should identify the parameters of hazards that may cause harmful effects, including the groundwater level, the moisture content of soil, contamination of the groundwater and soil, and the change of soil properties by soaking and draining in order to characterize the hazard of flooding processes in urban and industrial areas. The classification of factors affecting the vulnerability of urban and industrial areas is based on the four features, or indicators of vulnerability, including urban, geotechnical, environmental, and operational indicators. An assessment of harmful effects of flooding should be made following the identification of the flooding hazard degree and the vulnerability of the area to flooding. The research findings contain the threshold of the geological safety and the acceptable depth of the groundwater. Any design of engineering protection actions should take account of the drainage norm within the boundaries based on the acceptable groundwater level in terms of the geological safety threshold.

DOI: 10.22227/1997-0935.2013.8.131-136

References
  1. Kuranov N.P., Kuranov P.N. Normativnye trebovaniya k sistemam inzhenernoy zashchity ot podtopleniya [Regulatory Requirements Applicable to Systems of Engineering Protection from Flooding]. Vodosnabzhenie i sanitarnaya tehnika [Water supply and sanitery equipment]. 2009, no.1, pp. 59—65.
  2. PACE official site. Available at: http://www.pacewater.com. Date of access: 28.05.2013.
  3. NDS official site. Available at: http://www.ndspro.com. Date of access: 28.05.2013.
  4. ADS official site. Available at: http://www.americandrainagesystems.com. Date of access: 28.05.2013.
  5. Drainage Systems Dublin official site. Available at: http://www.drainagesystems.ie. Date of access: 28.05.2013.
  6. Metodika otsenki veroyatnostnogo ushcherba ot vrednogo vozdeystviya vod i otsenki effektivnosti osushchestvleniya preventivnykh vodokhozyaystvennykh meropriyatiy [Methodology of Evaluation of Probable Damages Caused by the Harmful Influence of Water and Evaluation of Efficiency of Preventive Water Management Activities]. Ìoscow, VIEMS Publ., 2005.
  7. Kuranov N.P. Metodicheskie rekomendatsii po otsenke urovney bezopasnosti, riska i ushcherba ot podtopleniy gradopromyshlennykh territoriy [Methodological Recommendations on Evaluation of Safety, Risk and Damage Levels in Respect of Flooding of Urban and Industrial Territories]. Moscow, ZAO “DAR/VODGEO” Publ., 2010, 58 p.
  8. Dzektser E.S., Pyrchenko V.A. Tekhnologiya obespecheniya ustoychivogo razvitiya urbanizirovannykh territoriy v usloviyakh vozdeystviya prirodnykh opasnostey [Technology for Sustainable Development of Urbanized Territories Exposed to Natural Hazards]. Moscow, ZAO “DAR/VODGEO” Publ., 2004, 166 p.
  9. Kuz'min V.V., Timofeeva E.A., Chunosov D.V. Otsenka riska negativnykh vozdeystviy pri podtoplenii urbanizirovannykh territoriy [Evaluation of the Risk of Negative Impacts of the Flooding Exposure in Respect of Urbanized Territories]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. Moscow, VST Publ., 2008, no. 6, pp. 44—49.
  10. Osipov V.I., Shoygu S.K., editors. Prirodnye opasnosti Rossii. Tom 3. Ekzogennye geologicheskie opasnosti [Natural Hazards in Russia. Volume 3. Exogenous Geological Dangers]. Ìoscow, KRUK Publ., 2003.
  11. Ragozin A.L., editor. Prirodnye opasnosti Rossii. Tom 6. Otsenka i upravlenie prirodnymi riskami [Natural Hazards in Russia. Volume 6. Evaluation and Management of Natural Risks]. Ìoscow, KRUK Publ., 2003.

Download

ASSESSMENT OF NOISE POLLUTION OF INHABITED TERRITORIES IMPACTED BY AIRFIELDS

Vestnik MGSU 2/2012
  • Sazonov Eduard Vladimirovich - Voronezh State University of Civil Engineering and Architecture Doctor of Technical Sciences, Department of Urban Planning, Voronezh State University of Civil Engineering and Architecture, 84 20-letija oktjabrja st., Voronezh, Russia.
  • Suhorukova Irina Anatol'evna - Voronezh State University of Civil Engineering and Architecture Senior Lecturer, Department of Architectural Design and Urban Planning, Voronezh State University of Civil Engineering and Architecture, 84 20-letija oktjabrja st., Voronezh, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 130 - 134

In the article, authors provide an overview of effective regulatory, reference and technical documents that govern the extent of suitability of territories adjacent to airfields for building-up. Methods of assessing the acceptable limits of the aviation noise in the areas adjacent to airfields are considered in the article. Ecologization of airfield environs is not a new problem. The research described in the article is noteworthy for the proposed optimization of any plans for the assurance of habitability of specific areas impacted by noise pollutions. The optimization consists in a set of organizational and technical solutions based on the noise levels in specific areas, development planning conditions of inhabited areas, and the monitoring of the airfield environs. It is the multi-factor approach that is capable of resolving the problem of ecological stress imposed by the noise coming from the air transport. Towards this end, the problem-solving strategy is to be developed and implemented in the areas that feature the same unfavorable environmental characteristics.

DOI: 10.22227/1997-0935.2012.2.130 - 134

References
  1. Osipov G.L., Prutkov B.G., Shishkin I.A. Gradostroitel'nye mery bor'by s shumom [Urban Development Measures of Acoustic Protection]. Moscow, Strojizdat, 1975.
  2. Transport Noise, in English. Translation edited by Tol'skij V.E., Butakov G.V., Mel'nikov B.N. Moscow, Transport, 1995.
  3. Zaborschikova N.P., Pestrjakova S.V. Shum goroda. Ocenka i regulirovanie shumovogo rezhima selitebnyh territorij. [Urban Noise. Assessment and Regulation of the Noise Regime in Urban Areas]. Moscow, ASV, SPbGASU, 2004, 112 p.
  4. SNiP 23-03—2003. Zaschita ot shuma [Construction Norms and Rules 23-03—2003. Protection from Noise]. SPb, DEAN, 2004.
  5. GOST 22283—88. Shum aviacionnyj. Dopustimye urovni na territorii zhiloj zastrojki i metody ego izmerenija [State Standard 22283—88. Aviation Noise. Acceptable Levels in Residential Areas and Methods of Measurement]. Moscow, 1984.
  6. Rekomendacii po ustanovleniju zon ogranichenija zhiloj zastrojki v okrestnostjah ajeroportov grazhdanskoj aviacii iz uslovij shuma [Recommendation for the Identification of Boundaries of Residential Areas in the Environs of Civil Airports Based on Noise Impacts]. Moscow, Strojizdat, 1987.

Download

SETTING BOUNDARIES OF RESIDENTIAL AREAS IN THE ENVIRONS OF AIRFIELDS

Vestnik MGSU 2/2012
  • Suhorukova Irina Anatol'evna - Voronezh State University of Civil Engineering and Architecture Senior Lecturer, Department of Architectural Design and Urban Planning, Voronezh State University of Civil Engineering and Architecture, 84 20-letija oktjabrja st., Voronezh, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 135 - 139

In this article, various methods of assessment of acceptable aviation noise in the environs of airfields are considered. Noise maps of Voronezh-B airfield have been compiled on the basis of the research presented in the article. The results of our research have made it possible to adjust the method of analysis underlying the acceptable setting of boundaries of residential areas impacted by the aviation noise. As a result of the research, solutions to environmental problems typical for the environs of airfields were developed and presented in the article. The results of the research were incorporated into the Infrastructure Research Project.

DOI: 10.22227/1997-0935.2012.2.135 - 139

References
  1. SNiP 23-03—2003. Zaschita ot shuma [Construction Norms and Rules 23-03—2003. Protection from Noise]. SPb, DEAN, 2004, 80 p.
  2. GOST 22283—88. Shum aviacionnyj. Dopustimye urovni na territorii zhiloj zastrojki i metody ego izmerenija [State Standard 22283—88. Aviation Noise. Acceptable Levels in Residential Areas and Methods of Measurement]. Moscow, 1984.
  3. Transport Noise, in English. Translation edited by Tol'skij V.E., Butakov G.V., Mel'nikov B.N. Moscow, Transport, 1995.
  4. Osipov G.L., Prutkov B.G., Shishkin I.A. Gradostroitel'nye mery bor'by s shumom [Urban Development Measures of Acoustic Protection]. Moscow, Strojizdat, 1975.
  5. Rekomendacii po ustanovleniju zon ogranichenija zhiloj zastrojki v okrestnostjah ajeroportov grazhdanskoj aviacii iz uslovij shuma [Recommendations for the Setting of Boundaries of Residential Areas in the Environs of Civil Airports Based on Noise Impacts]. Moscow, Strojizdat, 1987.

Download

Results 1 - 4 of 4