Реакция конструкции здания с оконным блоком на взрывное воздействие на основе решения уравнения динамики

Vestnik MGSU 1/2014
  • Доронин Федор Леонидович - Московский государственный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, доцент кафедры гидравлики и водных ресурсов, Московский государственный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Труханова Людмила Николаевна - Московский государственный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, доцент кафе- дры физики, Московский государственный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Фомина Марина Васильевна - Московский государственный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, профессор кафедры физики, Московский государственный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 33-40

При проектировании жилых зданий и непроизводственных помещений часто не предусматриваются дополнительные меры по обеспечению прочности от динамического воздействия внутри помещения. Крепления стен сооружения в каркас оказываются не рассчитаны на ударную волну, возникающую вследствие взрыва бытового газа или газового баллона. Обычно при проектировании здания задача на специальную динамическую нагрузку сводится к расчету безопасного ударного давления, превышение которого приводит к разрушению сооружения. Стена с оконным проемом при динамическом воздействии на нее является своего рода легкосбрасываемой конструкцией, уменьшающей значения избыточного давления внутри помещения. Окна с установленными в них стеклопакетами обладают достаточной прочностью, что лишает конструкцию этого преимущества при сопротивлении на ударную нагрузку. Предложенная методика расчета конструкции с оконным блоком позволяет определить динамическую реакцию стены сооружения на взрывной импульс и возникающее при этом деформационное состояние конструкции.

DOI: 10.22227/1997-0935.2014.1.33-40

References
  1. Абросимов А.А., Комаров А.А. Мероприятия, обеспечивающие безопасные нагрузки при аварийных взрывах в зданиях со взрывоопасными технологиями // Сейсмостойкое строительство. Безопасность сооружений. 2002. № 4. С. 48—51.
  2. Комаров А.А. Разрушение зданий при аварийных взрывах бытового газа // Пожаробезопасность. 2004. Т. 13. № 5. С. 15—23.
  3. Пилюгин Л.П. Обеспечение взрывоустойчивости зданий с помощью предохранительных конструкций. М. : Пожнаука, 2000. 224 с.
  4. Мишуев А.В., Комаров А.А., Хуснутдинов Д.З. Общие закономерности развития аварийных взрывов и методы снижения взрывных нагрузок до безопасного уровня // Пожаровзрывобезопасность. 2001. Т. 10. № 6. С. 8—19.
  5. Комаров А.А. Анализ последствий аварийного взрыва природного газа в жилом доме // Пожаробезопасность. 1999. Т. 8. № 4. С. 49—53.
  6. Newmark Natan M., Rosenblueth Emilio. Fundamentals of earthquake Engineering. Prentice-Hall, Inc. Englewood Cliffs. New York, 1971, 344 p.
  7. Справочник проектировщика. Динамический расчет специальных инженерных сооружений и конструкций / Ю.К. Амбриашвили, А.И. Ананьин, А.Г. Барченков и др. М. : Стройиздат, 1986. 462 с.
  8. Clough Ray W., Penzien Josepf. Dynamics of Structures. World Book Company. New York. 1977, 320 p.
  9. Korn G.A. and Korn T.M. Mathematical Handbook for Scientists and Engineers, Second Edition, Dover. New York, 2000, 943 p.
  10. Доронин Ф.Л., Ляпин А.Ю. Расчет конструкций сооружений на взрывную нагрузку на основе численного решения уравнения движения // Вестник МГСУ. 2010. № 4. С. 72—78.

Download

Учет скорости движения транспортных средств в расчетах нежестких дорожных одежд

Vestnik MGSU 8/2018 Volume 13
  • Кириллов Андрей Михайлович - Автомобильно-дорожный колледж кандидат физико-математических наук, преподаватель физики и астрономии, Автомобильно-дорожный колледж, 354008, Краснодарский край, г. Сочи, ул. Яна Фабрициуса, д. 26, а/1; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 959-972

Предмет исследования: взаимодействие движущегося транспортного средства с асфальтобетонным дорожным покрытием. Цели: анализ влияния динамических нагрузок со стороны движущегося транспортного средства на дорожную одежду с асфальтобетонным покрытием. Материалы и методы: модели взаимодействия построены на импульсном подходе (импульс динамических сил) и коэффициенте динамичности. Результаты: математическая модель, базирующаяся на импульсном подходе и позволяющая определять нагрузку на дорожную одежду в зависимости от скорости транспортного средства. Выводы: 1) по мере увеличения скорости силовое воздействие движущегося транспортного средства на дорожное покрытие при малых скоростях быстро уменьшается, достигая минимума при некоторой скорости, а затем медленно возрастает; 2) наличие оптимального скоростного режима эксплуатации автодороги, при котором силовое воздействие на дорожную одежду минимально и соблюдение которого может увеличить срок эксплуатации дороги.

DOI: 10.22227/1997-0935.2018.8.959-972

References
  1. Wang G., Roque R., Morian D. Effects of surface rutting on near-surface pavement responses based on a two-dimensional axle-tire-pavement interaction finite-element model // Journal of Materials in Civil Engineering. 2012. Vol. 24. No. 11. Pp. 1388-1395. DOI: 10.1061/(asce)mt.1943-5533.0000526.
  2. Liu Q., Shalaby A. Simulation of pavement response to tire pressure and shape of contact area // Canadian Journal of Civil Engineering. 2013. Vol. 40. No. 3. Pp. 236-242. DOI:10.1139/cjce-2011-0567.
  3. Wang H., Al-Qadi I.L., Stanciulescu I. Simulation of tyre-pavement interaction for predicting contact stresses at static and various rolling conditions // International Journal of Pavement Engineering. 2012. Vol. 13. No. 4. Pp. 310-321. DOI: 10.1080/10298436.2011.565767.
  4. Liu P., Wang D., Oeser M. Application of semi-analytical finite element method coupled with infinite element for analysis of asphalt pavement structural response // Journal of Traffic and Transportation Engineering (English Edition). 2015. Vol. 2. No. 1. Pp. 48-58. DOI:10.1016/j.jtte.2015.01.005.
  5. Xia K. Finite element modelling for tire/pavement interaction: application to predicting pavement damage // International Journal of Pavement Research and Technology. 2010. Vol. 3. No. 3. Pp. 135-141.
  6. Vaitkus A., Paliukaitė M. Evaluation of time loading influence on asphalt pavement rutting // Procedia Engineering. 2013. Vol. 57. Pp. 1205-1212. DOI: 10.1016/j.proeng.2013.04.152.
  7. Siddharthan R.V., Yao J., Sebaaly P.E. Pavement strain from moving dynamic 3D load distribution // Journal of Transportation Engineering. 1998. Vol. 124. No. 6. Pp. 557-566. DOI: 10.1061/(asce)0733-947x(1998)124:6(557).
  8. Pascale P., Doré G., Prophète F. Characterization of tire impact on the pavement behaviour // Canadian Journal of Civil Engineering. 2004. Vol. 31. No. 5. Pp. 860-869. DOI: 10.1139/l04-038.
  9. Weissman S. Influence of tire-pavement contact stress distribution on development of distress mechanisms in pavements // Transportation Research Record: Journal of the Transportation Research Board. 1999. No. 1655. Pp. 161-167. DOI: 10.3141/1655-21.
  10. Kim D. Super-single tire loadings and their impacts on pavement design // Canadian Journal of Civil Engineering. 2008. Vol. 35. No. 2. Pp. 119-128. DOI: 10.1139/l07-090.
  11. El-Kholy S.A., Galal S.A. A study on the effects of non-uniform tyre inflation pressure distribution on rigid pavement responses // International Journal of Pavement Engineering. 2012. Vol. 13. No. 3. Pp. 244-258. DOI: 10.1080/10298436.2011.623780.
  12. Vaiana R., Capiluppi G.F., Gallelli V., Iuele T., Minani V. Pavement surface performances evolution: an experimental application // Procedia - Social and Behavioral Sciences. 2012. Vol. 53. Pp. 1149-1160. DOI: 10.1016/j.sbspro.2012.09.964.
  13. Кириллов А.М., Завьялов М.А. Моделирование процессов энергообмена в системе дорожное покрытие - транспортное средство // Инженерно-строительный журнал. 2015. № 5. С. 34-44. DOI: 10.5862/MCE.57.3.
  14. Семенова Т.В. Обеспечение сцепных качеств мокрых шероховатых асфальтобетонных покрытий на улицах городов и сельских поселений // Вестник Сибирской государственной автомобильно-дорожной академии. 2009. № 11. С. 36-42.
  15. Семенова Т.В., Герасимова С.А., Корончевская Е.В. Требования к расстояниям между дождеприемниками ливневой канализации городских дорог и улиц // Молодой ученый. 2016. № 6 (110). С. 184-191. URL: https://moluch.ru/archive/110/27067/.
  16. Александров А.С., Александрова Н.П., Семенова Т.В. Критерии проектирования шероховатых асфальтобетонных покрытий из условия обеспечения безопасности движения // Известия высших учебных заведений. Строительство. 2009. № 2. С. 66-73.
  17. Александров А.С., Семенова Т.В. Обеспечение сцепных качеств асфальтобетонных покрытий городских дорог и улиц при проектировании сети дождевой канализации // Вестник Московского государственного автомобильно-дорожного университета (МАДИ). 2009. № 2. С. 29-32.
  18. Chupin O., Piau J., Chabot A. Effect of bituminous pavement structures on the rolling resistance // Proceeding the 11th International Conference on Asphalt Pavements. 2010. Pp. 73-82.
  19. Louhghalam A., Akbarian M., Ulm F.-J. Flügge’s conjecture: dissipation-versus deflection-induced pavement-vehicle interactions // Journal of Engineering Mechanics. 2014. Vol. 140. No. 8. Pp. 171-179. DOI: 10.1061/(asce)em.1943-7889.0000754.
  20. Anupam K., Srirangam S.K., Scarpas A., Kasbergen C. Influence of temperature on tire-pavement friction // Transportation Research Record. Journal of the Transportation Research Board. 2013. Vol. 2369. No. 1. Pp. 114-124. DOI: 10.3141/2369-13.
  21. Lu T., Thom N.H., Parry T. Numerical simulation of the influence of pavement stiffness on energy dissipation // Computing in Civil and Building Engineering, Proceedings of the International Conference. 2010. Vol. 30. Pp. 4830.
  22. Pouget S., Sauzéat C., Di Benedetto H., Olard F. Viscous energy dissipation in asphalt pavement structures and implication for vehicle fuel consumption // Journal of Materials in Civil Engineering. 2011. Vol. 24. No. 5. Pp. 568-576. DOI:10.1061/(asce)mt.1943-5533.0000414.
  23. Gui J., Phelan P.E., Kaloush K.E., Golden J.S. Impact of pavement thermophysical properties on surface temperatures // Journal of Materials in Civil Engineering. 2007. Vol. 19. No. 8. Pp. 683-690. DOI: 10.1061/(asce)0899-1561(2007)19:8(683).
  24. Feng D., Hu W., Yu F., Cao P., Zhang X. Impact of asphalt pavement thermophysical property on temperature field and sensitivity analysis // Journal of Highway and Transportation Research and Development. 2011. Vol. 11. Pp. 12-19. DOI: 10.3969/j.issn.1002-0268.2011.11.003.
  25. Завьялов М.А. Термодинамическая теория жизненного цикла дорожного асфальтобетонного покрытия. Омск : СибАДИ, 2007. 283 с.
  26. Zoorob S.E., Collop A.C., Brown S.F. Performance of bituminous and hydraulic materials in pavements : Proceedings of the Fourth European Symposium, Bitmat4, Nottingham, UK, 11-12 April 2002. Netherlands : CRC Press, 2002. 416 p.
  27. Hansson J., Lenngren C.A. Using deflection energy dissipation for predicting rutting // 10th International Conference on Asphalt Pavements, August 12 To 17, 2006, Quebec City, Canada. 2006. Pp. 112-123.
  28. Zhang Q., Lu Y., Jia X. The Deformation characteristics of asphalt mixture based on dissipation energy // International Conference on Transportation Engineering 2009. ASCE, 2009. Pp. 1250-1255. DOI: 10.1061/41039(345)207.
  29. Щепетева Л.С., Агапитов Д.А., Тюрюханов К.Ю. Устойчивость асфальтобетона к колееобразованию // Модернизация и научные исследования в транспортном комплексе. 2016. Т. 1. С. 319-323.
  30. Ядыкина В.В., Ашыров О., Хороших А.С. Повышение устойчивости асфальтобетона к колееобразованию // Эффективные строительные композиты : науч.-практ. конф. к 85-летию заслуженного деятеля науки РФ, академика РААСН, доктора технических наук Баженова Юрия Михайловича. Белгород : БГТУ им. В.Г. Шухова, 2015. С. 771-774.
  31. Яковлева М.И. Испытание колеей // Автомобильные дороги. 2011. № 1. С. 89-90.
  32. Хафизов Э.Р., Вдовин Е.А., Фомин А.Ю., Мавлиев Л.Ф., Буланов Н.Е. Современные методы оценки эксплуатационных свойств дорожных асфальтобетонов // Известия Казанского государственного архитектурно-строительного университета. 2017. № 1 (39). С. 279-285.
  33. Герцог В.Н., Долгих Г.В., Кузин Н.В. Расчет дорожных одежд по критериям ровности. Часть 1. Обоснование норм ровности асфальтобетонных покрытий // Инженерно-строительный журнал. 2015. № 5 (57). С. 45-57. DOI: 10.5862/MCE.57.4.
  34. Завьялов М.А., Завьялов А.М. Энергетический баланс дорожного покрытия // Известия высших учебных заведений. Строительство. 2005. № 6. С. 61-64.
  35. Степанов А.В., Корягин О.Г. Осветленные асфальтобетонные покрытия и возможности энергосбережения в наружном освещении // Энергосбережение. 2001. № 2. С. 10-11.
  36. Coseo P., Larsen L. Cooling the heat island in compact urban environments: the effectiveness of Chicago’s Green Alley Program // Procedia Engineering. 2015. Vol. 118. Pp. 691-710. DOI:10.1016/j.proeng.2015.08.504.
  37. Pomerantz M., Akbari H., Chang S.-C., Levinson R., Pon B. Examples of cooler reflective streets for urban heat-island mitigation: Portland cement concrete and chip seals // Lawrence Berkeley National Laboratory. 2003. DOI: 10.2172/816205.
  38. Sailor D.J., Fan H. Modeling the diurnal variability of effective albedo for cities // Atmospheric Environment. 2002. Vol. 36. No. 4. Pp. 713-725. DOI:10.1016/s1352-2310(01)00452-6.
  39. Doulos L., Santamouris M., Livada I. Passive cooling of outdoor urban spaces. The role of materials // Solar Energy. 2004. Vol. 77. No. 2. Pp. 231-249. DOI:10.1016/j.solener.2004.04.005.
  40. Graczyk M., Zofka A., Urbanik A. Analytical solution for the heat propagation with infinite speed in the multilayer pavement system // ARRB Conference, 26th, 2014, Sydney, New South Wales, Australia. 2014.
  41. Marc P., Belc F., Lucaci G. Modeling road pavements taking into consideration the thermo-physical characteristics of the layers // Energy and Clean Technologies, Proceedings of the 13th International Multidisciplinary Scientific Geoconference, SGEM. 2013. Pp. 709-716.
  42. Hall M.R., Dehdezi P.K., Dawson A.R., Grenfell J., Isola R. Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions // Journal of Materials in Civil Engineering. 2011. Vol. 24. No. 1. Pp. 32-47. DOI: 10.1061/(ASCE)MT.1943-5533.0000357.
  43. Chen B.L., Bhowmick S., Mallick R.B. A laboratory study on reduction of the heat island effect of asphalt pavements // Journal of the Association of Asphalt Paving Technologists. 2009. Vol. 78. Pp. 209-248.
  44. Айталиев Ш.М., Телтаев Б.Б., Киялбаев А.К. Теплообменные процессы в слоях дорожной одежды и их влияние на тепловой баланс в городах // Экология промышленного производства. 2004. № 1. С. 28-31.
  45. Katzschner L. Urban climatology and town planning // Вестник Воронежского государственного университета. Сер.: География. Геоэкология. 2008. № 2. С. 95-100.
  46. Балдина Е.А., Константинов П., Грищенко М., Варенцов М. Исследование городских островов тепла с помощью данных дистанционного зондирования в инфракрасном тепловом диапазоне // Земля из космоса: наиболее эффективные решения. 2015. № 1. С. 38-42.
  47. Yang L., Qian F., Song De-X., Zheng Ke-J. Research on Urban Heat-Island Effect // Procedia Engineering. 2016. Vol. 169. Pp. 11-18. DOI: 10.1016/j.proeng.2016.10.002.
  48. Исаков С.В., Шкляев В.А. Определение суммарного влияния антропогенноизменных поверхностей на возникновение эффекта «городского острова тепла» с использованием геоинформационных систем // Вестник Оренбургского государственного университета. 2014. № 1 (162). С. 178-182.
  49. Исаков С.В., Шкляев В.А. Применение карт дифференциального альбедо для оценки теплового эффекта «городского острова тепла» с использованием геоинформационных систем // Геоинформационное обеспечение пространственного развития Пермского края : сб. науч. тр. Пермь, Пермский государственный университет, 2011. С. 59-63.
  50. Адамов Г.Е., Гребенников Е.П., Курбангалеев В.Р., Левченко К.С., Малышев П.Б., Порошин Н.О. Спектрально-управляемые материалы на основе гибридных наноструктур // Технологии и материалы для экстремальных условий (создание и применение «умных» материалов) : тезисы докладов 7-й Всероссийской научной конференции. М. : МЦАИ РАН, 2012. С. 30-31.
  51. Шмелин П.С., Порошин Н.О., Адамов Г.Е., Гребенников Е.П. Новые спектрально управляемые материалы с рекордными функциональными возможностями / Технологии и материалы для экстремальных условий : тез. докл. Всеросс. науч. конф. М. : МЦАИ РАН, 2011. С. 48-53.
  52. Гребенников Е.П., Малышев П.Б., Шмелин П.С., Адамов Г.Е. Гибридные наноструктуры как основа спектрально управляемых материалов/ Наноинженерия. 2011. № 6. С. 29-34.
  53. Mallick R.B., Chen B.-L., Bhowmick S., Hulen M.S. Capturing solar energy from asphalt pavements // International symposium on asphalt pavements and environment, international society for asphalt pavements. Zurich, Switzerland. 2008. Pp. 161-172.
  54. Loomans M., Oversloot H., De Bondt A., Jansen R., Van Rij H. Design tool for the thermal energy potential of asphalt pavements // Eighth International IBPSA Conference, Eindhoven, Netherlands. 2003. Pp. 745-752.
  55. Смирнов А.В., Александров А.С. Механика дорожных конструкций. Омск : СибАДИ, 2009. 211 с.
  56. Завьялов М.А. Некоторые закономерности процесса деформирования дорожного покрытия // Известия высших учебных заведений. Строительство. 2007. № 1. С. 94-97.
  57. Wu J., Liang J., Adhikari S. Dynamic response of concrete pavement structure with asphalt isolating layer under moving loads // Journal of Traffic and Transportation Engineering (English Edition). 2014. Vol. 1. No. 6. Pp. 439-447. DOI: 10.1016/s2095-7564(15)30294-4.
  58. Khavassefat P., Jelagin D., Birgisson B. Dynamic response of flexible pavements at vehicle-road interaction // Road Materials and Pavement Design. 2014. Vol. 16. No. 2. Pp. 256-276. DOI: 10.1080/14680629.2014.990402.
  59. Корочкин А.В. Расчет жесткой дорожной одежды с учетом воздействия движущегося транспортного средства // Наука и техника в дорожной отрасли. 2011. № 2. С. 8-10.
  60. Александров А.С., Калинин А.Л. Совершенствование расчета дорожных конструкций по сопротивлению сдвигу. Часть 1. Учет деформаций в условии пластичности Кулона - Мора // Инженерно-строительный журнал. 2014. № 7 (59). С. 4-17. DOI: 10.5862/MCE.59.1.
  61. Александрова Н.П., Чусов В.В. Особенности расчета асфальтобетонных покрытий по сопротивлению сдвигу с учетом накапливания повреждений // Вестник Сибирской государственной автомобильно-дорожной академии. 2016. № 3 (49). С. 42-50. DOI: 10.26518/2071-7296-2016-3(49)-42-50.
  62. Дмитриев И.И., Кириллов А.М. Теплофизические модели исследования и контроля дорожного покрытия // Строительство уникальных зданий и сооружений. 2017. № 11 (62). С. 25-46. DOI: 10.18720/CUBS.62.3.
  63. Милюшенко С.А. К вопросу моделирования рабочего процесса укладки асфальтобетонного покрытия асфальтоукладчиком // Актуальные проблемы науки и техники глазами молодых ученых : мат-лы Междунар. науч.-практ. конф. Омск : СибАДИ, 2016. С. 280-282.
  64. Зубков А.Ф., Андрианов К.А., Куприянов Р.В. Влияние условий производства работ на длину полосы укладки асфальтобетонных смесей при устройстве многополосных дорожных покрытий // Научный журнал строительства и архитектуры. 2016. № 3 (43). С. 43-55.
  65. Зубков А.Ф. Определение возможной продолжительности уплотнения покрытий нежесткого типа при строительстве автомобильных дорог // Вестник Тамбовского государственного технического университета. 2006. Т. 12. № 3-2. С. 806-817.
  66. Зубков А.Ф. Анализ методов разработки технологических процессов уплотнения дорожных покрытий из горячих асфальтобетонных смесей // Вестник Тамбовского государственного технического университета. 2006. Т. 12. № 4-2. С. 1158-1161.
  67. Потеряев И.К., Суковин М.В., Алешков Д.С. Методика вероятностной оценки интенсивности использования дорожно-строительной машины - асфальтоукладчика - в сменное время // Интернет-журнал «Науковедение». 2016. Т. 8. № 2 (33). С. 126. URL: http://naukovedenie.ru/PDF/42TVN216.pdf. DOI: 10.15862/42TVN216.

Download

Results 1 - 2 of 2