ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

City-ecological perspectives of the development of high urbanized multifunctional centers of the largest Russian cities

Vestnik MGSU 1/2015
  • Kolesnikov Sergey Anatol’evich - Samara State University of Architecture and Civil Engineering (SGASU) Candidate of Architecture, Associate Professor, chair, Department of Descriptive Geometry and Engineering Graphics, Samara State University of Architecture and Civil Engineering (SGASU), 194 Molodogvardeyskaya str., Samara, 443001, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-15

This article presents some results of the author’s dissertation research dedicated to formation of an architectural typology of high urbanized multifunctional units of urban structure of the largest cities (further HUMUUS) as centers of social activity, which include buildings, constructions, transportation equipment and open spaces, where human flows transpose, start and end with the purpose of bringing into this space a concentrated maximum of goods, services and information with minimum time expenditures. This article draws attention to the development analysis of the structure-forming functions of HUMUUS and their town planning and environmental impact on the surrounding area. The study of planning structures of the largest Russian cities (Samara, Kazan, Nizhny Novgorod) made it possible to identify a number of main objects, in which structure-forming functions of HUMUUS are materialized: railroad complex (historically formed, developed, dominated, system-wide road junction), transport interchange hub (providing intraurban messages), public office and business centers, leisure and entertainment centers, shopping centers. Basing on researches of Russian and foreign experience, it is possible to predict with full confidence the following trends and streams of environmental and urban development of HUMUUS in the near-term perspective: Strengthening of the environmental and urban frame by network evolution of HUMUUS; Inclusion of green areas of HUMUUS in the system of citywide green areas; Increment of the interest of the investors to the public road junction for the purpose of reorganization of them to full HUMUUS with all characteristics of high-urbanized and environmental and urban reorganization (separation of traffic and pedestrian flows, maximum capacity, multiple-level system, multifunctional, increase in landscaped green space, reconstruction of engineering systems and communications, the use of modern ecological building designs and finishing materials); Preferential development of the intracity HUMUUS with all the characteristics of intensification of using space (reduction in area of transporting communication with the help of multilevel junction, increment of a number of stories in a building, the use of the levels of the underground space, mechanization of horizontal communication, release of the territory for planting, use of intelligent eco-stabilizing systems of control and management of functioning HUMUUS); Development of the territorial growth trends of HUMUUS with reconstruction of the functional processes and environmental settings in joint junction area; Emphasis of landscape and recreational areas development; Strengthening the role of creation of living environment and planting in the existing urban planning and functional HUMUUS.

DOI: 10.22227/1997-0935.2015.1.7-15

References
  1. Kolesnikov S.A. Arkhitekturnaya tipologiya vysokourbanizirovannykh mnogo-funktsional’nykh uzlov gorodskoy struktury krupneyshego goroda [Architectural Typology of High-Urbanized Multifunction Junctions of the Urban Structure of the Largest City]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 3, pp. 4—8. (In Russian)
  2. Rentziou A., Gkritza K., Milioti C., Karlaftis M.G. Urban Road Pricing: Modeling Public Acceptance. Journal of the Urban Planning and Development, ASCE. 2010, vol. 137, no. 1, pp. 56—64. DOI: ttp://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000041.
  3. Fischer J.M., Amekudzi A. Quality of Life, Sustainable Civil Infrastructure, and Sustainable Development: Strategically Expanding Choice. Journal of the Urban Planning and Development, ASCE. 2010, vol. 137, no. 1, pp. 39—48. DOI: http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000039.
  4. Yuan C.W., Chen L., Zhang J.F. Sharing Rates Model of Different Traffic Ways in Urban Comprehensive Passenger Hub. Chang’an daxue xuebao (ziran kexue ban) journal of chang’an university (natural science edition). 2010, vol. 30, no. 3, pp. 66—70.
  5. Byrne D. City Region 2020: Integrated Planning for a Sustainable Environment — Joe Ravetz; earthscan. London, 2000, pp. 307+XII, & 19.95 paperback. FUTURES. 2002, vol. 34, no. 2, pp. 215—218.
  6. Gel’fond A.L. Arkhitekturno-tipologicheskoe formirovanie delovykh tsentrov Londona na sovremennom etape [Architectural and Typological Formation of Business Centers in London at the Present Stage]. Privolzhskiy nauchnyy zhurnal [Privolzhsky Scientific Journal]. 2007, no. 2, pp. 58―66. (In Russian)
  7. Zeidler E.H. Multi-Use Architecture in the UrbaN Context. Van Norstrand Reinhold, 1st A edition,1985, 158 p.
  8. Vlasov D.N. Regional’nye transportno-peresadochnye uzly i ikh planirovochnoe reshenie (na primere g. Matsumoto, Yaponiya) [Regional Transport Interchange Hubs in Big and Medium-sized Cities of Japan]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 6, pp. 21—28. (In Russian)
  9. Belyaev V.L. Planirovanie gradostroitel’nogo osvoeniya podzemnogo prostranstva g. Moskvy [Plans for Development of the Underground Space of Moscow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 35—46. (In Russian)
  10. Kas’yanov V.F., Tabakov N.A. Opyt zarubezhnykh stran v oblasti rekonstruktsii gorodskoy zastroyki [Foreign Experience in the Field of Urban Area Reconstruction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 21—27. (In Russian)
  11. Kas’yanov V.F., Lyapin A.V., Chernysheva O.I. Ekologicheskaya rekonstruktsiya gorodskoy zastroyki [Ecological Reconstruction of Urban Area]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 50—57. (In Russian)
  12. Karakova T.V. Kontseptsiya kompleksnoy programmy «Sredovoy kadastr goroda» [The Concept of a Complex Program
  13. Gel’fond A.L. Istoricheskiy tsentr goroda kak mnogofunktsional’naya struktura [The Historic Center of the City as a Multifunctional Structure]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2005, no. 9, pp. 81—83. (In Russian)
  14. Kerner B.S., Daimler A.G. Optimum Principle for Calculating the Minimum Probability of Congestion. Traffic Engineering and Control. 2011, vol. 52, no. 9, pp. 380—386.
  15. Dutsev M.V. Arkhitekturno-khudozhestvennoe formirovanie otkrytykh gorodskikh prostranstv (na primere evropeyskikh gorodov) [Architectural and artistic formation of open urban spaces (for example, European cities)]. Arkhitekton: izvestiya vuzov [Architecton: Proceedings of Higher Education]. 2012, no. 40, pp. 28—40. (In Russian)
  16. Akhmedova E.A. Sovremennyy general’nyy plan goroda i vozmozhnosti ego realizatsii v usloviyakh rynka [The Modern General City Plan and Its Implementation Opportunities on the Market]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and civil construction]. 2010, no. 8, pp. 6—10. (In Russian)
  17. «Zelenye» standarty v stroitel›stve [«Green» Construction Standards]. Tsentr ekologicheskoy sertifikatsii — «Zelenye standarty» [Center for Environmental Certification — «Green Standards»]. Available at:http://www.greenstand.ru/watch/stroy.html.Date of access: 09.12.2014. (In Russian)

Download

Megalopolis as the mirrorof the soul

Vestnik MGSU 3/2013
  • Frolov Aleksandr Viktorovich - Moscow State University (MSU) Candidate of Philosophical Sciences, Senior Lecturer; +7 (495) 939-14-21, Moscow State University (MSU), 27-4 Lomonosovskiy prospekt, Room G-324, GSP-1, Moscow, 119991, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sukhodol’skaya Natal’ya Pavlovna - Moscow State University of Civil Engineering (MGSU) Candidate of Philosophical Sciences, Department Manager (Engineer), Department of Philosophy; +7 (499) 183-24-10, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 34-40

The article focuses on some civilization-related factors determining the life of a contemporary megalopolis and influencing the structure of the human soul. The system of global capitalism appears to be the most important factor producing a strong impact onto the urban population. The present-day megalopolis operates as an economic centre having pragmatic rhythms and spaces. «Homo economicus» is a relevant definition of the present-day man.This state of affairs reflects the structure of the human soul and its needs. It is overcrowded with sensual stimuli and temptations producing misbalance and stress. Two phenomenological distinctions are employed to analyze the experience of urban residents: noise vs. silence and motion vs. quietness. Noise and motion constitute the background of the human experience here; silence and quietness are local and volatile. On the contrary, outside of the city, silence is the background of the experience, and any motion vanishes in the realm of quietness. Nature is calm, and we need its calmness to give some rest to our senses. The effect of permanent haste typical for the lifestyle in big cities makes people unconscious of themselves. They lose their lifetime to implement their basic functions like eating/working/sleeping. Any higher incomes and comfort don’t make people happier; therefore, they have to look for alternative lifestyles (e.g. “downshifting”). Some people are not eager to be part of the global economy, but they have no opportunity to get out of the urban space. They need some remedy to resist the urban attack. That remedy could be a kind of a psychological technique reducing the effect of aggression. In this respect, the practice of hesychia deriving from the Christian ascetical tradition seems to be useful for an urban resident allowing him/her to attain the state of inner silence. This technique may be employed as a way to survive in the urban haste.

DOI: 10.22227/1997-0935.2013.3.34-40

References
  1. Devis M. Planeta trushchob [Planet of Slums]. Logos [Logos]. 2008, no. 3(66), pp. 108—129.
  2. Gorodskoe naselenie: aglomeratsii [Urban Population: Agglomerations]. Available at: http://www.citypopulation.de/world/Agglomerations.html. Date of access: September 09, 2012.
  3. Frolov A.V., Sukhodol’skaya N.P. K fenomenologii gorodskogo prostranstva [On Phenomenology of the Urban Space]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, vol. 3, pp. 394—399.
  4. Mezentsev S.D. Sovremennoe gradostroitel’stvo: dolzhnoe i sushchee, idealy i real’nost’ [Urban Planning Today: What Is Due and What Is Available. Ideals and Reality]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 3, pp. 389—393.
  5. Merleau-Ponty M. Fenomenologiya vospriyatiya [Phenomenology of Perception]. St.Petersburg, 1999.
  6. Soyya E. Kak pisat’ o gorode s tochki zreniya prostranstva [Writing about the City from the Viewpoint of Space]. Logos [Logos]. 2008, no. 3(66), pp. 130—140.
  7. Lavrinets E. Chtenie gorodskogo prostranstva: predvaritel’nye zametki [Reading the Urban Space: Preliminary Notes]. Topos. Filosofsko-kul’turologicheskiy zhurnal [Topos. Journal of Philosophy and Culture Studies]. 2004, no. 2(9), pp. 82—89.
  8. Sennet R. Kapitalizm v bol’shom gorode: globalizatsiya, gibkost’ i bezrazlichie [Capitalism in the Big City: Globalization, Flexibility and Indifference]. Logos [Logos]. 2008, no. 3(66), pp. 95—107.
  9. Bikbov A. Moskva/Parizh: prostranstvennye struktury i telesnye skhemy [Moscow/Paris: Spatial Structures and Corporal Patterns]. Logos [Logos]. 2002, no. 3(34), pp. 1—24.
  10. Khoruzhiy S.S. Fenomenologiya askezy [Phenomenology of Asceticism]. Moscow, 1998.

Download

Features of construction schemes of self-heating sources for largeindustrial complex and logistics centers in urbosystems on ecological principles

Vestnik MGSU 11/2013
  • Rakhnov Oleg Evgen'evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Saklakov Igor' Yur'evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potapov Aleksandr Dmitrievic - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 177-187

The urban environment is a combination of man-made objects (buildings, roads, business-centers, engineering systems of heat, water, energy supply, waste disposal, water disposal, transport, food production, etc.) and elements of the natural environment, which together with the socio -economic factors (cultural-domestic servicing, health care, etc.) influence the population. In respect of its expansion and degree of impact, thermal pollution is one of the biggest forms of physical pollution of the environment: with a fairly high degree of certainty the size of fuel, hot water and steam consumption can be counted together with the degree of thermal pollution of the surrounding area. The problem of thermal pollution has two dimensions: global (planetary) and local.From the engineering point of view, fighting thermal pollution is identical to energy efficiency. The higher is the level of energy-saving policy and work, the more intense is the fight against thermal pollution.Modern urbosystems of major cities are composed not only of residential estate, but also of industrial buildings. Large shopping centers are recently becoming widespread in the cities. These centers and industrial buildings have large storage space as an important logistic element. Business development in Russia radically alters the fundamental approaches to the production and consumption of all types of energy. Considering continuous growth of energy prices, critical condition of municipal heating and electrical grids, unreasonably high tariffs for the service of grid companies, which are usually noncompetitive in the market, the power supply problem is becoming more urgent. Sometimes power and heat interruptions may result in big losses. Any owner is interested in reducing the risks. The trend is that modern business is refocused on the maximum autonomy, which supposes its own source of heat supply. During boiler construction, the question about the efficiency of capital investments, operating and energy costs rises. Capital costs are determined by the heat source power. Heat supply of storage and industrial buildings has a number of features, which should be taken into account during designing. Particularly important is the study of the engineering infrastructure of settlements, industrial complexes in actively developing urbosystems. Design of modern heating systems is running on ecological principles – energy efficiency and resource saving. In this case, the operation of an industrial complex requires uninterrupted heat supply with a view to minimizing costs such as the design and operating costs. The main difference with the housing complex is shooting heat consumption in the end of work shift.

DOI: 10.22227/1997-0935.2013.11.177-187

References
  1. Ibragimov M.Kh.-G. Sostoyanie i problemy energetiki Rossii v usloviyakh rynochnoy ekonomiki [Energy Production State and Problems in Russia in the Context of Market System]. Energosberezhenie i vodopodgotovka [Enercy Efficiency and Water Treatment]. 2010, no. 2(64), pp. 2—6.
  2. Kozhukhovskiy I.S. Energeticheskaya bezopasnost' evropeyskoy chasti Rossii [Energy Security of the European Part of Russia]. Energosberezhenie [Energy Efficiency]. 2013, no. 5, pp. 4—10.
  3. Dolinskiy A.A., Draganov B.Kh., Mel'nichuk M.D. K voprosu ekologii [On the Problems of Ecology]. Promyshlennaya teplotekhnika [Industrial Heat Technology]. 2011, no. 1, vol. 33, pp. 38—45.
  4. Kupriyanov V. Strategiya, zadachi i perspektivy razvitiya teplosnabzhayushchey otrasli v Rossii [Strategy, Aims and Prospects of Heat Supply Industry Development in Russia] Kommunal'nyy kompleks Rossii [Utility Complex in Russia]. 2009, no. 9(63), pp. 33—37.
  5. Bobrov E.A. Sotsial'no-ekonomicheskie problemy krupnykh gorodov i puti ikh resheniya [Social and Economical Problems of Cities and Ways of their Solution]. Nauchnye vedomosti BelGU. Seriya: Estestvennye nauki [Scientific Journal of Belgorod State National Research University. Natural Sciences Series]. 2011, no. 15, pp. 199—208.
  6. Potapov A.D. Ekologiya [Ecology]. 2nd ed. Moscow, Vysshaya Shkola Publ., 2005, 526 p.
  7. Il'ichev V.A. Printsipy preobrazovaniya goroda v biosferosovmestimyy i razvivayushchiy cheloveka [Principles of the City Transformation into Biosphere Compatible and Developing Human]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2010, no. 6, pp. 3—13.
  8. Mogosova N.N. Otsenka ekologicheskogo sostoyaniya territorii v sovremennom gorodskom planirovanii [Assessing Environmental State of an Area in Modern Urban Planning]. Problemy regional'noy ekologii [Problems of Regional Ecology]. 2013, no. 1, pp. 23—28.
  9. Orlov T.V. Printsipy opredeleniya prostranstvennoy struktury informatsionno-izmeritel'noy seti v sistemakh kompleksnogo geoekologicheskogo monitoringa [The Principles of Spatial Structure Determining of Information Measuring Network in the Systems of Integrated Geoenvironmental Monitoring]. Geoekologiya [Geoecology]. 2008, no. 2, pp. 44—50.
  10. Telichenko V.I., Slesarev M.Yu., Potapov A.D., Shcherbina E.V. Ekologicheskaya bezopasnost' stroitel'stva [Ecological Security of Construction]. Moscow, Arkhitektura-S Pupl., 2009, 311 p.
  11. Zimin L.B., Fialko N.M. Analiz effektivnosti teplonasosnykh sistem utilizatsii teploty kanalizatsionnykh stokov dlya teplosnabzheniya sotsial'nykh ob"ektov [Analysis of the Effectiveness of Heat Pump Systems of Sewage Runoff Heat Recovery for Social Facilities Heat Supply]. Promyshlennaya teplotekhnika [Industrial Heat Technology]. 2008, no. 1, pp. 39—41.
  12. Prituzhalova O.A. Reshenie ekologicheskikh problem gorodov s ispol'zovaniem podkhodov ekologicheskogo menedzhmenta [Solving Environmental Problems of Cities Using Environmental Management Approaches]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Areas]. 2010, no. 1, pp. 21—26.
  13. Matashova M.A. Ekologicheskiy podkhod k landshaftno-gradostroitel'nomu preobrazovaniyu territoriy Khabarovska [Ecological Approach to Landscape and Town Planning Transformation of the Khabarovsk Territories]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2010, no. 4, pp. 43—44.
  14. Kartashova K.K. Gorodskaya sreda kak otrazhenie sotsial'nogo litsa goroda [Urban Environment as a Reflection of Social Face of a City]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Areas]. 2012, no., pp. 12—17.
  15. Ivashkina. I.V., Kochurov B.I. Urboekodiagnostika i sbalansirovannoe gorodskoe prirodopol'zovanie: perspektivnye nauchnye napravleniya v geografii i geoekologii [Urboekodiagnostiks and Balanced Urban Environmental Management: Promising Research Areas in Geography and Environmental Geology]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Areas]. 2011, no. 3, pp. 2—6.
  16. Matusevich V. Programma razvitiya rayonnoy sistemy teplosnabzheniya [The Program of the District Heating System Development]. Kommunal'nyy kompleks Rossii [Utility Complex in Russia]. 2012, no. 10(100), pp. 56—60.
  17. Naumchik E.M. Optimizatsiya sistemy teplosnabzheniya Minska [Optimization of Minsk Heating Sistem]. Energosberezhenie [Energy Efficiency]. 2011, no. 1, pp.60—66.
  18. Usenko A.Yu., Usenko Yu.I., Adamenko D.S., Bikmaev S.R. Analiz effektivnosti ispol'zovaniya teplovogo nasosa dlya snabzheniya teplom bytovykh potrebiteley [Analysis of the Use of Heat Pump for Heat Supply of Residential Consumers]. Metallurgicheskaya teplotekhnika: sbornik nauchnykh trudov [Metallurgical Heat Engineering: Collection of Works]. Dnepropetrovsk, Novaya Ideologiya Publ., 2010, pp. 232—241.
  19. Dmitriev A.N., Kuzina O.V. O metodike i meropriyatiyakh po snizheniyu energoemkosti stroitel'noy produktsii [On the Methods and Activities Aimed at Reduction of the Energy Intensity of Construction Products]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2011, no. 2, pp. 55—57.
  20. Shubina E.V., editor. Ekologiya [Ecology]. Moscow, MGSU Publ., 2008, 159 p.
  21. Emel'yanov A.G., Tikhomirov O.A., Murav'eva L.V. Ekologicheskoe sostoyanie geosistem i ego kolichestvennaya otsenka [Ecological State of Geosystems and its Quantitative Evaluation]. Problemy regional'noy ekologii [Problems of Regional Ecology]. 2012, no. 6, pp. 6—10.
  22. Vasil'ev G.P., Timofeev N.A., Kolesova M.F., Dmitriev A.N. Pritochno-vytyazhnaya ventilyatsionnaya ustanovka s teplonasosnoy rekuperatsiey tepla ventilyatsionnykh vybrosov [Supply-extract Ventilation System with Heat pump Heat Recovery of the Ventilation Exhaust]. Energobezopasnost' i energosberezhenie [Energy Security and Energy Efficiency]. 2012, no. 6(48), pp. 14—21.
  23. Panin V.F. Zashchita biosfery ot energeticheskikh vozdeystviy [Protection of the Biosphere from Energy Impacts]. Tomsk, TPU Publ., 2009, 62 p.
  24. Baskakov A.P., editor. Teplotekhnika [Heating equipment]. Moscow, Energoatomizdat Publ. 1991. 224.
  25. Ryabinkin V.N. O problemakh ucheta teplovoy energii i teplonositeley v kotel'nykh RTS i TES [On the Problems of Thermal Energy and Heat Transfer Account in Boilers of Thermal Power Plant]. Energobezopasnost' i energosberezhenie [Energy Security and Energy Efficiency]. 2006, no. 6(48), pp. 55—62.
  26. Khavanov P.A. Otsenka zagryazneniya vozdushnogo basseyna vybrosami teplogeneriruyushchikh ustanovok [Estimating Air Pollution by the Emissions of Heat-generating Plants]. Energobezopasnost' i energosberezhenie [Energy Security and Energy Efficiency]. 2010, no. 3, pp. 29—38.
  27. Soldatenko T.N. Model' ostatochnogo resursa inzhenernykh sistem s vysokim urovnem iznosa [Model residual life of engineering systems with a high level of wear]. Inzhenernostroitel'nyy zhurnal [Magazine of Civil Engineering]. 2012, no. 6, pp. 64—72.
  28. Il'in V.K. Kompleksnoe vnedrenie energosberegayushchego oborudovaniya i tekhnologiy [Integrated implementation of Energy Saving Equipment and Technologies]. Energosberezhenie [Energy Efficiency]. 2002, no. 6, p.52—55.
  29. Sultanguzin I.A., Potapova A.A., Govorin A.V., Albul A.V. Teplovye nasosy dlya rossiyskikh gorodov [Heat pumps for Russian cities]. Energosberezhenie [Energy Efficiency]. 2011, no. 1, pp. 66—71.
  30. Eksaev A., Vershinskiy V. Osobennosti i perspektivy primeneniya GTETs dlya snabzheniya potrebiteley teplovoy energiey [Features and Application Prospects of Thermal Power Plants for Consumers of Thermal Energy Supply]. Kommunal'nyy kompleks Rossii [Utility Complex in Russia]. 2013, no. 4(106), pp. 26—32.
  31. Pugachev S.V. Tekhnicheskoe regulirovanie i voprosy energoeffektivnosti v stroitel'stve [Technical Regulation and Questions on Energy Efficiency in the Construction]. Energosberezhenie [Energy Efficiency]. 2013, no. 2. pp.14—22.
  32. Fialko ?.?., Sherenkovskiy Yu.V., Prokopov V.G., etc. Energeticheskaya effektivnost' kombinirovannykh sistem traditsionnogo i elektricheskogo otopleniya zdaniy [Energy Efficiency of the Combined Systems of Traditional and Electric Heating of Buildings]. Promyshlennaya teplotekhnika [Industrial Heat Technology]. 2011, no. 5, vol. 33, pp. 49—59.
  33. Abramov V.V., Agababov V.S., Anichkov S.N. Sovremennye prirodookhrannye tekhnologii v elektroenergetike: informatsionnyy sbornik [Modern Environmental Technologies in the Power Industry: Informational Collection of Works]. Moscow, MEI Publishing House, 2007, 388 p.
  34. Bryukhan' A.F., Bryukhan' F.F., Potapov A.D. Inzhenerno-ekologicheskie izyskaniya dlya stroitel'stva teplovykh elektrostantsiy [Engineering and Environmental Studies for the Construction of Thermal Power Plants]. Moscow, ASV Publ., 2010, 191 p.
  35. Soldatenko T.N. Ekspertno-statisticheskiy metod otsenivaniya parametrov upravlyayushchikh vozdeystviy na inzhenernye seti zdaniy v usloviyakh neopredelennosti [Expert Statistical Method for Estimating the Parameters of Control Actions on Engineering Network of Buildings in the Context of Uncertainty]. Inzhenerno-stroitel'nyy zhurnal [Magazine of Civil Engineering]. 2011, no. 5, pp. 60—66.
  36. Kokorin O.Ya., In'kov A.P. O novom sposobe teplosnabzheniya [On the New Method of Heating]. ZhKKh: zhurnal rukovoditelya i glavnogo bukhgaltera [Housing and Public Utilities: the Journal of Chief Manager and Chief Accountant]. 2012, no. 9, pp. 57—60.
  37. Rotov P.V., Sharapov V.I. Osobennosti regulirovaniya nagruzki sistem teplosnabzheniya v perekhodnyy period [Features of the Load Control of Heating Systems during Transition Period]. Energosberezhenie i vodopodgotovka [Enercy Efficiency and Water Treatment]. 2010, no. 2(64), pp. 25—29.

Download

Results 1 - 3 of 3