RESEARCH OF BUILDING MATERIALS

Asymptotics of the filtration problem for suspension in porous media

Vestnik MGSU 1/2015
  • Kuzmina Ludmila Ivanovna - Higher School of Economics Department of Applied Mathematics, Moscow Institute of Electronics and Mathematics, Higher School of Economics, 20 Myasnitskaya str., Moscow, 101000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Osipov Yuri Viktorovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Computer Science and Applied Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 54-62

The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

DOI: 10.22227/1997-0935.2015.1.54-62

References
  1. Barenblatt G.I., Entov V.M., Ry- zhik V.M. Theory of Fluid Flows Through Natural Rocks. Dordrecht, Kluwer Academic Publishers, 1990, 395 p.
  2. Bedrikovetsky P. Mathematical Theory of Oil and Gas Recovery with Applications to Ex-USSR Oil and Gas Fields. Dordrecht, Kluwer Academic, 1993, 576 p.
  3. Khilar K.C., Fogler H.S. Migrations of Fines in Porous Media. Dordrecht, Kluwer Academic Publishers, 1998, 173 p.
  4. Tien C., Ramarao B.V. Granular Filtration of Aerosols and Hydrosols. 2nd ed. Amsterdam, Elsevier, 2007, 512 p.
  5. Tufenkji N. Colloid and Microbe Migration in Granular Environments: A Discussion of Modeling Methods. Colloidal Transport in Porous Media. 2007, pp. 119—142. DOI: http://dx.doi.org/10.1007/978-3-540-71339-5_5.
  6. Baveye P., Vandevivere P., Hoyle B.L., DeLeo P.C., De Lozada D.S. Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials. Critical Reviews in Environmental Science and Technology. 1998, vol. 28, pp. 123—191. DOI: http://dx.doi.org/10.1080/10643389891254197.
  7. Vidali M. Bioremediation. An Overview. Pure and Applied Chemistry. 2001, vol. 73, no. 7, pp. 1163—1172. DOI: http://dx.doi.org/10.1351/pac200173071163.
  8. Gitis V., Dlugy C., Ziskind G., Sladkevich S., Lev O. Fluorescent Clays — Similar Transfer with Sensitive Detection. Chemical Engineering Journal. 2011, vol. 174, no. 1, pp. 482—488. DOI: http://dx.doi.org/10.1016/j.cej.2011.08.063.
  9. Bradford S., Kim H., Haznedaroglu B., Torkzaban S., Walker S. Coupled Factors Influencing Concentration-Dependent Colloid Transport and Retention in Saturated Porous Media. Environ. Sci. Technol. 2009, vol. 43 (18), pp. 6996—7002. DOI: http://dx.doi.org/10.1021/es900840d.
  10. You Z., Badalyan A., Bedrikovetsky P. Size-Exclusion Colloidal Transport in Porous Media-Stochastic Modeling and Experimental Study. SPE Journal. 2013, vol. 18, no. 4, pp. 620—633. DOI: http://dx.doi.org/10.2118/162941-PA.
  11. Bedrikovetsky P. Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media. Transport in Porous Media. 2008, vol. 75, no. 3, pp. 335—369. DOI: http://dx.doi.org/10.1007/s11242-008-9228-6.
  12. Chalk P., Gooding N., Hutten S., You Z., Bedrikovetsky P. Pore Size Distribution from Challenge Coreflood Testing by Colloidal Flow. Chemical Engineering Research and Design. 2012, vol. 90, no. 1, pp. 63—77. DOI: http://dx.doi.org/10.1016/j.cherd.2011.08.018.
  13. Mays D.C., Hunt J.R. Hydrodynamic and Chemical Factors in Clogging by Montmorillonite in Porous Media. Environmental Science and Technology. 2007, vol. 41, no. 16, pp. 5666—5671. DOI: http://dx.doi.org/10.1021/es062009s.
  14. Civan F. Reservoir Formation Damage : Fundamentals, Modeling, Assessment, and Mitigation. 2nd ed. Amsterdam, Gulf Professional Pub., 2007.
  15. Gitis V., Rubinstein I., Livshits M., Ziskind G. Deep-Bed Filtration Model with Multistage Deposition Kinetics. Chemical Engineering Journal. 2010, vol. 163, no. 1—2, pp. 78—85. DOI: http://dx.doi.org/10.1016/j.cej.2010.07.044.
  16. Noubactep C., Care S. Dimensioning Metallic Iron Beds for Efficient Contaminant Removal. Chemical Engineering Journal. 2010, vol. 163, no. 3, pp. 454—460.
  17. Yuan H., Shapiro A.A. A Mathematical Model for Non-Monotonic Deposition Profiles in Deep Bed Filtration Systems. Chemical Engineering Journal. 2011, vol. 166, no. 1, pp. 105—115. DOI: http://dx.doi.org/10.1016/j.cej.2010.10.036.
  18. Santos A., Bedrikovetsky P. A Stochastic Model for Particulate Suspension Flow in Porous Media. Transport in Porous Media. 2006, vol. 62, pp. 23—53. DOI: http://dx.doi.org/10.1007/s11242-005-5175-7.
  19. You Z., Bedrikovetsky P., Kuzmina L. Exact Solution for Long-Term Size Exclusion Suspension-Colloidal Transport in Porous Media. Abstract and Applied Analysis. 2013, vol. 2013, 9 p. DOI: http://dx.doi.org/10.1155/2013/680693.
  20. Herzig J.P., Leclerc D.M., Goff P. Le. Flow of Suspensions Through Porous Media — Application to Deep Filtration. Industrial and Engineering Chemistry. 1970, vol. 62 (5), pp. 8—35. DOI: http://dx.doi.org/10.1021/ie50725a003.
  21. Alvarez A.C., Bedrikovetsky P.G., Hime G., Marchesin D., Rodrigues J.R. A Fast Inverse Solver for the Filtration Function for Flow of Water with Particles in Porous Media. J. of Inverse Problems. 2006, vol. 22, pp. 69—88. DOI: http://dx.doi.org/10.1088/ 0266-5611/22/1/005.
  22. Vyazmina E.A., Bedrikovetskii P.G., Polyanin A.D. New Classes of Exact Solutions to Nonlinear Sets of Equations in the Theory of Filtration and Convective Mass Transfer. Theoretical Foundations of Chemical Engineering. 2007, vol. 41, no. 5, pp. 556—564. DOI: http://dx.doi.org/10.1134/S0040579507050168.
  23. You Z., Osipov Y., Bedrikovetsky P., Kuzmina L. Asymptotic Model for Deep Bed Filtration. Chemical Engineering Journal. 2014, vol. 258, pp. 374—385. DOI: http://dx.doi.org/10.1016/j.cej.2014.07.051.
  24. Kuzmina L.I., Osipov Yu.V. Particle Transportation at the Filter Inlet. International Journal for Computational Civil and Structural Engineering. 2014, vol. 10, iss. 3, pp. 17—22.
  25. Kuzmina L.I., Osipov Yu.V. Matematicheskaya model' dvizheniya chastits v fil'tre [Mathematical Model of Particle Motion in the Filter]. Voprosy prikladnoy matematiki i vychislitel'noy mekhaniki : sbornik nauchnykh trudov [Problems of Applied Mathematics and Computational Mechanics]. Moscow, MGSU Publ., 2014, vol. 17, pp. 295—304. (in Russian)

Download

Results 1 - 1 of 1