SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

optimization for trenchless reconstruction of pipelines

Vestnik MGSU 1/2015
  • Zhmakov Gennadiy Nikolaevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Water Disposal and Water Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Aleksandr Anatol’evich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Mechanical Engineering, Siberian Federal University (SibFU), 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 63-73

Today the technologies of trenchless reconstruction of pipelines are becoming
more and more widely used in Russia and abroad. One of the most perspective is methods is shock-free destruction of the old pipeline being replaced with the help of hydraulic installations with working mechanism representing a cutting unit with knife disks and a conic expander. A construction of a working mechanism, which allows making trenchless reconstruction of pipelines of different diameters, is optimized and patented and its developmental prototype is manufactured. The dependence of pipeline cutting force from knifes obtusion of the working mechanisms. The cutting force of old steel pipelines with obtuse knife increases proportional to the value of its obtusion. Two stands for endurance tests of the knifes in laboratory environment are offered and patented.

DOI: 10.22227/1997-0935.2015.1.63-73

Download

ENERGY AND RESOURCE EFFICIENCY OF TRIBOLOGICAL ENGINEERING METHODS APPLIED TO CONSTRUCTION MACHINERY AND EQUIPMENT

Vestnik MGSU 8/2012
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering Doctor of Technical Sciences, Professor, Department of Mechanical Equipment, Details of Construction Machines and Technology of Metals 8 (499) 183-94-95, Moscow State University of Civil Engineering, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Voronina Irina Vladimirovna - Moscow State University of Civil Engineering Senior Lecturer, Department of Mechanical Equipment, Details of Construction Machines and Technology of Metals 8 (499) 182-16-87, Moscow State University of Civil Engineering, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orekhov Aleksey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanical Equipment, Elements of Machines and Technology of Metals 8 (499) 183- 94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 169 - 174

The subject matter of the article is the energy and resource efficiency of tribological engineering
methods applied to working sections and interfaces of construction machines and equipment
exposed to varied temperature and loading conditions. The relevance of the problem is based on the
need to increase the durability of working sections exposed to intensive wear and tear, to improve
the productivity and to reduce the material and power expenses associated with the maintenance
and repair of the above items of machinery. The solution is based on tribology-related achievements.
Effective tribological methods include surface cladding and spraying of wear-resistant materials
onto the wear surface, induction brazing of reinforcing hard alloys, thermal and chemicothermal
treatment, etc. The most effective is an integrated structural and surface-treatment method.
The resource efficiency of tribological methods is based on their energy efficiency at the stages
of manufacturing and operation. Extension of the service life of products shouldn't increase the
energy consumption rate. The latter is estimated with the help of the efficiency factor of tribological
systems.
The authors propose a new deformation and topography-related method of identification of the
efficiency factor of rubbing elements. It encompasses multiple friction and wear models.

DOI: 10.22227/1997-0935.2012.8.169 - 174

References
  1. Gustov Yu.I. Tribotekhnika stroitel’nykh mashin i oborudovaniya [Tribological Engineering of Construction Machinery and Equipment]. Moscow, MGSU, 2011, 197 p.
  2. Chikhos Kh. Sistemnyy analiz v tribonike [The System Analysis in Tribological Engineering]. Moscow, Mir Publ., 1982, 351 p.
  3. Kragel’skiy I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos [Fundamentals of Friction and Wear Analysis]. Moscow, Mashinostroenie Publ. 1977, 526 p.
  4. Gustov Yu.I., Voronina I.V. Povyshenie dolgovechnosti sredstv mekhanizatsii stroitel’stva [Increase of Durability of Construction Machinery]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, pp. 305—308.
  5. Gustov Yu.I., Voronina I.V., Orekhov A.A. Metodologiya issledovaniya tribomekhanicheskikh pokazateley stroitel’noy tekhniki [Methodology of Research of Tribological Engineering Performance Indicators of Construction Machinery]. Mekhanizatsiya stroitel’stva [Construction Machinery]. 2011, no. 8, pp. 10—12.
  6. Gustov Yu.I., Voronina I.V., Lyubushkin K.A. Metod otsenki deformatsionno-destruktivnykh pokazateley detaley stroitel’noy tekhniki [Method of Assessment of Deformation-destructive Indicators of Details of Construction Machinery]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 278—281.
  7. Gustov Yu.I. Voronina I.V. Energotopografi cheskiy metod issledovaniya iznosostoykosti rabochikh organov i sopryazheniy stroitel’noy tekhniki [Method of Power-driven Topographic Examination of Wear Resistance of Operating Elements and Interfaces of Construction Machines]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 273—277.
  8. Gustov Yu.I., Voronina I.V., Orekhov A.A. Opredelenie napryazheniy destruktsii metallov na osnove sinergetiki plasticheskoy deformatsii [Identification of Decomposition Strain of Metals through the employment of Synergetics of Plastic Deformation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 172—175.
  9. Ivanova V.S., Balankin A.S., Bunin I.Zh. Sinergetika i fraktaly v materialovedenii [Synergetics and Fractals in Material Science]. Moscow, Nauka Publ.,1994, 383 p.
  10. Skudnov V.A. Predel’nye plasticheskie deformatsii metallov [Ultimate Plastic Deformations of Metals]. Moscow, Metallurgiya Publ., 1989, 176 p.

Download

Results 1 - 2 of 2