Исследование работы СПА и БПА на сжатие

Vestnik MGSU 1/2014
  • Лапшинов Андрей Евгеньевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант и ассистент кафедры железобетонных и каменных конструкций, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 52-57

Приведены результаты исследования работы стеклопластиковой (СПА) и базальтопластиковой (БПА) арматур на сжатие при испытаниях с различной рабочей зоной. Проанализированы результаты испытаний и механизмы разрушения образцов. Даны выводы и предложения об использовании композитной арматуры.

DOI: 10.22227/1997-0935.2014.1.52-57

References
  1. ACI 440.1R—06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich. 2006, 44 p.
  2. ACI 440.3R—04. Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich. 2004, 40 p.
  3. CNR-DT 203/2006, 2006. Istruzioni per la Progettazione, l’Esecuzione e il Controllo di Strutture di Calcestruzzo armato con Barre di Materiale Composito Fibrorinforzato (in Italian).
  4. CAN/CSA-S6-02, 2002. Design and Construction of Building Components with Fibre-Reinforced Polymers, CAN/CSA S806-02, Canadian Standards Association, Rexdale, Ontario, Canada, 177 p.
  5. Fib Bulletin #40. FRP reinforcement in RC structures. 147 p.
  6. ASTM D6641 / D6641M—09. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
  7. ASTM D3410 / D3410M—03, 2008. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.
  8. ASTM D695—10. Standard Test Method for Compressive Properties of Rigid Plastics.
  9. ГОСТ 4651—82 (СТ СЭВ 2896—81). Пластмассы. Метод испытания на сжатие.
  10. Исследование прочности и устойчивости однонаправленных стеклопластиковых стержней при осевом сжатии / А.Н. Блазнов, В.Ф. Савин, Ю.П. Волков, В.Б. Тихонов // Механика композиционных материалов и конструкций. 2007. Т. 13.

Download

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ НЕМЕТАЛЛИЧЕСКОЙ КОМПОЗИТНОЙ АРМАТУРЫ В КАЧЕСТВЕ РАБОЧЕЙ НЕНАПРЯГАЕМОЙ В СЖАТЫХ ЭЛЕМЕНТАХ

Vestnik MGSU 10/2015
  • Лапшинов Андрей Евгеньевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант и ассистент кафедры железобетонных и каменных конструкций, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 96-105

Дан анализ возможности применения стеклокомпозитной неметаллической арматуры в сжатых бетонных элементах. Приведены результаты сравнения исследований прочности и деформативности с высокопрочными композитной и стальной (класса А800) рабочими арматурами в нашей стране и за рубежом. Даны предложения по дальнейшим исследованиям композитной арматуры в качестве продольной в сжатых элементах.

DOI: 10.22227/1997-0935.2015.10.96-105

References
  1. Тамразян А.Г. Бетон и железобетон - взгляд в будущее // Вестник МГСУ. 2014. № 4. С. 181-189.
  2. Тамразян А.Г., Филимонова Е.А. Структура целевой функции при оптимизации железобетонных плит с учетом конструкционной безопасности // Промышленное и гражданское строительство. 2013. № 9. С. 14-15.
  3. Тамразян А.Г., Филимонова Е.А. Метод поиска резерва несущей способности железобетонных плит перекрытий // Промышленное и гражданское строительство. 2011. № 3. С. 23-25.
  4. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. М. : Минрегион России, 2012. 161 с.
  5. Рискинд Б.Я. Прочность сжатых железобетонных стоек с термически упрочненной арматурой // Бетон и железобетон. 1972. № 11. С. 31-33.
  6. Хаит И.Г., Чистяков Е.А. Применение высокопрочной арматуры в колоннах многоэтажных зданий // Научно-технический реферат : ВЦНИС. М. : Стройиздат, 1979. Сер. 8. Вып. 10. С. 36-42.
  7. Бейсембаев М.К. Прочность сжатых железобетонных элементов с высокопрочной ненапрягаемой арматурой : дисс.. канд. техн. наук. М. : НИИЖБ, 1991. 154 с.
  8. ACI 440.1R-15. Guide for the design and construction of structural concrete reinforced with FRP Bars. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich. 2015. 83 p.
  9. CAN/CSA-S6-02. Design and construction of building components with fibre-reinforced polymers, CAN/CSA S806-02. Canadian Standards Association, Rexdale, Ontario, Canada, 2002. 177 p.
  10. CNR-DT 203/2006. Istruzioni per la Progettazione, l’Esecuzione e il Controllo di Strutture di Calcestruzzo armato con Barre di Materiale Composito Fibrorinforzato. Romе : CNR, 2007. 42 p. (in Italian)
  11. Fib Bulletin #40. FRP reinforcement in RC structures. 147 p.
  12. Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials // Japan Society of Civil Engineers (JSCE). Concrete Engineering Series No. 23. 1997. 325 p.
  13. ASTM D695-10. Standard test method for compressive properties of rigid plastics. ASTM, 2010. 7 р.
  14. Лапшинов А.Е. Исследование работы СПА и БПА на сжатие // Вестник МГСУ. 2014. № 1. С. 52-57.
  15. Блазнов А.Н., Савин В.Ф., Волков Ю.П., Тихонов В.Б. Исследование прочности и устойчивости однонаправленных стеклопластиковых стержней при осевом сжатии // Механика композиционных материалов и конструкций. 2007. Т. 13. № 3. С. 426-440.
  16. ГОСТ 31938-2012. Арматура композитная полимерная для армирования бетонных конструкций. Общие технические условия. М. : Стандартинформ, 2014. 38 с.
  17. ГОСТ 4651-82 (СТ СЭВ 2896-81). Пластмассы. Метод испытания на сжатие. М. : Изд. стандартов, 1998. 8 с.
  18. Лапшинов А.Е., Мадатян С.А. Колонны, армированные стеклопластиковой и базальтопластиковой арматурой // Бетон и железобетон - взгляд в будущее : сб. тр. II Междунар., III Всеросс. конф. по бетону и железобетону (г. Москва, 12-16 мая 2014 г.). М., 2014. Т. III. С. 67-77.
  19. Afifi M.Z., Mohamed H., Benmokrane B. Axial capacity of circular concrete columns reinforced with gfrp bars and spiral // Journal of Composites for Construction. 2014. Vol. 18 (1). Режим доступа: http://www.researchgate.net/publication/260081219_Axial_Capacity_of_Circular_Concrete_Columns_Reinforced_with_GFRP_Bars_and_Spirals. Дата обращения: 02.06.2015.
  20. Hany Tobbi, Ahmed Sabry Farghaly, Brahim Benmokrane. Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars // ACI Structural Journal. July-August 2012. Vol. 109 (4). Режим доступа: http://www.researchgate.net/publication/260389101_Concrete_Columns_Reinforced_Longitudinally_and_Transversally_with_Glass_Fiber-Reinforced_Polymer_Bars. Дата обращения: 02.06.2015.
  21. Choo C.C., Harik I.E., Gesund H. Concrete columns reinforced with FRP bars: extending the life of RC structures // 34th Conference on Our World in Concrete & Structures. Singapore,16-18 August 2009. Рp. 15-22.
  22. De Luca A., Matta F., Nanni A. Behavior of full-scale concrete columns internally reinforced with glass frp bars under pure axial load // Composites & Polycon 2009. American Composites Manufacturers Association January 15-17, 2009 Tampa, FL USA. Режим доступа: http://www.bpcomposites.com/wp-content/uploads/2012/08/behavior_of_fullscale_concrete_columns_internally_reinforced_with_glass_frp_bars_under_pure.pdf. Дата обращения: 02.06.2015.
  23. Deiveegan A., Kumaran G. Reliability Study of concrete columns internally reinforced with nonmetallic reinforcements // Int. Journal of Civil and Structural Eng. 2010.Vol. 1. No. 3. Pp. 270-287.
  24. Головин Н.Г., Пахратдинов А.А. Прочность сжатых железобетонных элементов, изготовленных на щебне из бетона // Строительство и реконструкция. 2014. С. 101-106.

Download

ПЕРСПЕКТИВЫ ТЕХНОЛОГИИ ПРОИЗВОДСТВА АРМИРОВАННЫХ ЯЧЕИСТЫХ БЕТОНОВ АВТОКЛАВНОГО ТВЕРДЕНИЯ

Vestnik MGSU 6/2018 Volume 13
  • Лободенко Евгений Александрович - «Билд Фаст Текнолоджи» заместитель исполнительного директора по техническому развитию и контролю, «Билд Фаст Текнолоджи», 144002, Московская область, г. Электросталь, ул. Горького, д. 32.
  • Михайлова Елена Владимировна - «Эвоник Химия» менеджер технической поддержки, «Эвоник Химия», 115114, г. Москва, ул. Кожевническая, д. 14, стр. 5.
  • Гусев Константин Викторович - «ПолиКомпозит» руководитель отдела технологии и качества, «ПолиКомпозит», 180000, г. Псков, ул. Новаторов, д. 3.

Pages 740-747

Предмет исследования: исследования проводились в области производства ячеистого армированного бетона автоклавного твердения (газобетона). В качестве исходных данных представлены совместные экспериментальные исследования по подбору армирующего материала предприятий, выпускающих газобетон (г. Электросталь) и композитную арматуру (г. Псков). Цель: задача исследования сводится к подбору альтернативного металлической арматуре материала, который позволит снизить технологический цикл изготовления армированных ячеистобетонных изделий, будет способствовать облегчению конструкции и увеличит жизненный цикл изделия. Материалы и методы: рассматривается использование композитной арматуры, изготовленной с применением различных отвердителей (ангидридного и алифатического амина), влияющих на поведение композита в среде ячеистого автоклавного бетона (щелочная среда реакции, условия повышенной термостойкости). Результаты: результаты выполненных исследований показали существование возможности замены армирующих элементов при производстве ячеистого автоклавного газобетона. Выводы: на основании проведенных испытаний было принято решение продолжить лабораторные исследования на предмет термостойкости композитной арматуры с применением аминного отвердителя в среде ячеистого бетона автоклавного твердения. Подобная работа была проведена впервые, являясь ценной для усовершенствования существующей технологии производства армированного газобетона.

DOI: 10.22227/1997-0935.2018.6.740-747

References
  1. Груздев В.С., Синянский И.А., Лободенко Е.А. Возможности совершенствования технологии производства ячеистого бетона и изделий из него для малоэтажного строительства // Землеустройство и кадастр недвижимости: проблемы и пути их решения : мат. междунар. науч.-практ. форума, посв. 235-летию со дня основания Государственного университета по землеустройству. М. : ГУЗ-М, 2014. С. 233-237.
  2. Лободенко Е.А., Груздев В.С. Возможности применения полимерно композитной арматуры в производстве армированных ячеистых бетонов автоклавного твердения // Инновационные технико-технологические решения для строительной отрасли, ЖКХ и сельскохозяйственного производства : сб. мат. VI-й мол. науч.-практ. конф. Орел : Изд-во Орел ГАУ, 2015. С. 22.
  3. Вылегжанин В.П., Пинскер В.А. Перспективы развития технологии производства автоклавного газобетона // Современный автоклавный газобетон : сб. докл. науч.-практ. конф., 9-11.09.2015. Санкт-Петербург, 2015. С. 14.
  4. Левченко В.Н., Гринфельд Г.И. Производство автоклавного газобетона в России: перспективы развития под отрасли // Строительные материалы. 2011. № 9. С. 44-48.
  5. Write J., Fronford G. Durability of building materials: durability research in the United Stated and influence of RILEM on durability research // Materiaux et constructions. 1985. 18. Pp. 205-214.
  6. Omarov Zh.A. Dynamic tests of a dwelling house’s fragment with bearing walls from gas-blocks // Proceeding of International Conference on Earthquake Engineering in the 21st Century-IZIIS 40 EE-21C, Skopje/Ohrid, Macedonia. 2005. Pp. 4-41.
  7. Лаповская С.Д. Применения стержневой неметаллической композитной арматуры для армирования ячеистобетонных изделий автоклавного твердения // Опыт производства и применения ячеистого бетона автоклавного твердения : 8-я Междунар.-практ. конф. Минск-Могилев, 11-13.06.2014. С. 22.
  8. Коровкевич В.В., Пинскер В.А. и др. Малоэтажные дома из ячеистых бетонов. Рекомендации по проектированию, строительству и эксплуатации. Л. : ЛенЗНИИЭП, 1989. 284 с.
  9. Пинскер В.А., Вылегжанин В.П. Экономичные дома из газобетона. Правила проектирования // Ячеистые бетоны в современном строительстве : сб. докл. Вып. 6. Санкт-Петербург : НП «Межрегиональная северо-западная строительная палата», 2009. С. 7-12.
  10. Рекомендации по применению стеновых мелких блоков из ячеистых бетонов. М. : ЦНИИСК им. В.А. Кучеренко, 1992. 86 с.
  11. Справочник фирмы «Хебель» по жилищному строительству. Минск, 1997. 180 с.
  12. Справочник по производству и применению материалов и изделий YTONG. Минск, 1997. 98 с.
  13. Вишневский А.А., Гринфельд Г.И., Смирнова А.С. Отчет по итогам исследования проведенного Национальной Ассоциацией производителей автоклавного газобетона (НААГ) в январе-феврале 2017 года «Российский рынок автоклавного газобетона в 2016 году»: Экспресс-информация, 2017. 4 с.
  14. Степанова В.Ф., Степанов А.Ю., Жирков Е.П. Арматура композитная полимерная. М. : Изд-во АСВ, 2013. 200 с.
  15. Wang Y.C., Kodur V.K.R. Variation of strength and stiffness of fiber reinforced polymer reinforcing bars with temperature // Cement and Concrete Composites. 2005. 27 (9). Pp. 864-874.
  16. Мошинский Л. Эпоксидные смолы и отвердители. Тель-Авив : Аркадия пресс Лтд, 1995. 5 с.
  17. Аминные отвердители и их преимущества // ООО «ПолиКомпозит». Режим доступа: http://polikompozit.com.

Download

Results 1 - 3 of 3