DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Development of a computer-aided design system for optimization of steel trusses

Vestnik MGSU 2/2015
  • Vasil’kin Andrey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-37-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shcherbina Sergey Viktorovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanical Equipment, Machine Elements and Metal Technology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 21-37

The optimization of the construction solutions for building structures is obviously reasonable because in case of making optimal solutions the cost of construction and further operation can be essentially cut. Relatively small changes in construction solutions may lead to essential changes on the stage of construction and operation. According to the traditional approach a designer usually develops a limited number of variants, consideration of which doesn’t guarantee the closeness of the final result to optimum. That means, the problem of the development of new and optimization of the existing optimization methods for design solutions remains current. The article is devoted to the current problems of choosing the optimal design solution for steel structures of industrial buildings. The authors offered an algorithm for computer-aided design and obtained a design solution on the example of a truss implemented in PC ANSYS. As optimization variables the truss height, steel grade and element section type are considered. The algorithm allows determining the value of the minimum truss weight for trusses of various classes and types of section. Also the corresponding optimum truss height is estimated, which gives a minimum design weight for different types of sections.

DOI: 10.22227/1997-0935.2015.2.21-37

References
  1. Likhtarnikov Ya.M. Variantnoe proektirovanie i optimizatsiya stal’nykh konstruktsiy [Trial Design and Optimization of Steel Structures]. Moscow, Stroyizdat Publ., 1979, 319 p. (In Russian)
  2. Dzyuba A.S., Lipin E.K. Optimal’noe proektirovanie silovykh konstruktsiy minimal’nogo ob”ema pri ogranicheniyakh po prochnosti i ustoychivosti [Optimal Design of Load-Bearing Structures at the Minimum Amount of Restrictions for Strength and Stability]. Uchenye zapiski TsAGI [Scientific Notes of Central Aerohydrodynamic Institute]. 1980, vol. 11, no. 1, pp. 58—71. (In Russian)
  3. Ginzburg A.V., Vasil’kin A.A. Postanovka zadachi optimal’nogo proektirovaniya stal’nykh konstruktsiy [Problem Statement for Optimal Design of Steel Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 6, pp. 52—62. (In Russian)
  4. Volkov A.A., Vasil’kin A.A. Razvitie metodologii poiska proektnogo resheniya pri proektirovanii stroitel’nykh metallokonstruktsiy [Development of the Methodology of the Design Decision Searching in the Process of Structural Metalwork Design]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 9, pp. 123—137. (In Russian)
  5. Struchenkov V.I. Matematicheskie modeli i metody optimizatsii v sistemakh proektirovaniya trass novykh zheleznykh dorog [Mathematical Models and Optimization Techniques in Design Systems of New Railways Tracks]. Informatsionnye tekhnologii [Information Technologies]. 2013, no. 7, pp. 7—17. (In Russian)
  6. Mel’nikov N.P., editor. Metallicheskie konstruktsii. Spravochnik proektirovshchika [Metal Structures. Designer’s Guide]. Moscow, Stroyizdat Publ., 1980, 776 p. (In Russian)
  7. Gusakov A.A., editor. Sistemotekhnika [Systems Engineering]. Moscow, Fond «Novoe tysyacheletie» Publ., 2002, 768 p. (In Russian)
  8. Perel'muter A.V., Kriksunov E.Z., Karpilovskiy V.S., Malyarenko A.A. Integrirovannaya sistema dlya rascheta i proektirovaniya nesushchikh konstruktsiy zdaniy i sooruzheniy SCAD OFFICE. Novaya versiya, novye vozmozhnosti [Integrated System for Calculation and Design of Load-Bearing Structures of Buildings and Structures SCAD OFFICE. New Version, New Features]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 2, pp. 10—12. (In Russian)
  9. Volkov A.A., Belyaev A.V., Davydov E.A., Yudin S.V. Nekotorye zadachi avtomatizatsii proektirovaniya v stroitel’stve [Some Problems of Design Automation in Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 256—261. (In Russian)
  10. Shelofast V.V., Kulikov V.G., Al’ Khammadi, Yakovlev A.S. Avtomatizirovannoe proektirovanie zdaniy i sooruzheniy [Computer-aided Design of Buildings and Structures]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 9, pp. 49—51. (In Russian)
  11. Fedorik F. Efficient Design of a Truss Beam by Applying First Order Optimization Method. 11th International Conference of Numerical Analysis and Applied Mathematics 2013, ICNAAM. 2013, vol. 1558, issue 1, pp. 2171—2174. 1 DOI: http://dx.doi.org/10.1063/1.4825968.
  12. Clear J. Sistemologiya. Avtomatizatsiya resheniya sistemnykh zadach [Automation of System Tasks Solutions]. Transl, from English. Under the editorship of A.I. Gorlin. Moscow, Radio i svyaz' Publ., 1990, 544 p. (In Russian)
  13. Atkin A.V. Proektirovanie i realizatsiya avtomatizirovannoy sistemy dlya rascheta ploskikh sterzhnevykh sistem na osnove ob”ektno-orientirovannogo podkhoda [Design and Implementation of an Automated System for Calculation of Flat Bar Systems Basing On Object-Oriented Approach]. Internet-vestnik VolgGASU. Seriya: Stroitel’naya informatika [Internet Proceedings of the Volgograd State University of Architecture and Civil Engineering. Series: Construction Informatics]. 2007, no. 2 (4). Available at: http://vestnik.vgasu.ru/attachments/atkin_rus.pdf. (In Russian)
  14. Yang H., Chang Z., Hu J., Zhang Q. Integrated CAD software for steel frame detailing. Proceedings — 2010 2nd WRI World Congress on Software Engineering, WCSE 2010. 2010, vol. 1, art. 5718303, pp. 237—240. DOI: http://dx.doi.org/10.1109/WCSE.2010.60.
  15. Lebed' E.V., Atkin A.V., Romashkin V.N. Realizatsiya komp'yuternogo geometricheskogo modelirovaniya prostranstvennykh sterzhnevykh sistem [Implementation of Computer Geometrical Modeling of Spatial Rod Systems]. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya [Bulletin of People's Friendship University. Series: Engineering Studies]. 2010, no. 2, pp. 141—150. (In Russian)
  16. Kala Z., Kala J. Sensitivity Analysis of Stability Problems of Steel Structures Using Shell Finite Elements and Nonlinear Computation Methods. International Conference on Numerical Analysis and Applied Mathematics: Numerical Analysis and Applied Mathematics, ICNAAM. 2011, vol. 1389, pp. 1865—1868. DOI: http://dx.doi.org/10.1063/1.3636974.
  17. Sacks R., Warszawski A., Kirsch U. Structural Design in an Automated Building System. Automation in Construction. 2000, vol 10, issue 1, pp. 181—197. DOI: http://dx.doi.org/10.1016/S0926-5805(00)00074-1.
  18. Sobolev Yu.V., Okulov P.D. Proektirovanie stal’nykh stropil’nykh ferm iz effektivnykh profiley [Design of Steel Trusses of Effective Profiles]. Moscow, MISI Publ., 1990, 105 p. (In Russian)
  19. Vasil’kin A.A., Shcherbina S.V., Sukach A.A. Opyt chislennogo opredeleniya optimal’noy vysoty stropil’noy fermy na etape variantnogo proektirovaniya [Experience of the Numerical Estimation of the Optimal Height of a Construction Truss on Trial Design Stage]. Naukoemkie tekhnologii i innovatsii : sbornik dokladov Yubileynoy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [High Technologies and Innovations: a Collection of Papers of the Anniversary International Scientific and Practical Conference]. Belgorod, BGTU Publ., 2014, part. 2, pp. 3—11. (In Russian)

Download

Problem statement for optimal design of steel structures

Vestnik MGSU 6/2014
  • Ginzburg Aleksandr Vital'evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Professor of Department of Information Systems, Technologies and Automation in Civil Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vasil'kin Andrey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Steel Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337; + 7 (499) 183-37-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 52-62

The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel designs, offered by various authors for various types of constructions are considered. It is established that most often the criterion of a minimum of design mass is accepted as criterion of optimality; more rarely - a minimum of the given expenses, a minimum of a design cost in business. In the present article special attention is paid to a type of objective function of optimization problem. It is also established that depending on the accepted optimality criterion, the use of different types of functions is possible. This complexity of objective function depends on completeness of optimality criterion application. In the work the authors consider the following objective functions: the mass of the main element of a design; objective function by criterion of factory cost; objective function by criterion of cost in business. According to these examples it can be seen that objective functions by the criteria of labor expenses for production of designs are generally non-linear, which complicates solving the optimization problem. Another important factor influencing the problem of optimal design solution for steel designs, which is analyzed, is account for operating restrictions. In the article 8 groups of restrictions are analyzed. Attempts to completely account for the parameters of objective function optimized by particular optimality criteria, taking into account all the operating restrictions, considerably complicates the problem of designing. For solving this task it can be offered to use informational technologies and opportunities of automated systems. For this purpose it is necessary to develop the automated system of steel designs, allowing to consider some criteria of optimality and a wide range of the restrictions for steel structural designs. This will allow to accelerate projection process, to reduce labor input of a designer and essentially increase the quality of design solutions for steel designs.

DOI: 10.22227/1997-0935.2014.6.52-62

References
  1. Parlashkevich V.S., Vasil'kin A.A., Bulatov O.E. Proektirovanie i raschet metallicheskikh konstruktsiy [Design and Calculation of Metal Structures]. Moscow, MGSU Publ., 2013, 152 p.
  2. Klyuev S.V., Klyuev A.V., Lesovik R.V. Optimal'noe proektirovanie stal'noy prostranstvennoy fermy [Optimal Design of Steel Space Truss]. Vestnik TGASU [Proceedings of Tomsk State University of Architecture and Building]. 2008, no. 1, pp. 74—78.
  3. Vostrov V.K., Vasil'kin A.A. Optimizatsiya vysot poyasov stenki rezervuara [Optimization of the Height of Tank Shell Ring]. Montazhnye i spetsial'nye raboty v stroitel'stve [Erecting and Special Works in Construction]. 2005, no. 11, pp. 37—40.
  4. Peleshko І.D., Yurchenko V.V. Optimal'ne proektuvannya metalevikh konstruktsіy na suchasnomu etapі (oglyad prats') [Optimal Design of Metal Structures on Modern Stage: Overview of Works]. Metallicheskie konstruktsii [Metal Structures]. 2009, no. 1, vol. 15, pp. 13—21.
  5. Baranovskaya L.V. Ispol'zovanie metoda proektsiy gradienta pri optimal'nom proektirovanii metallokonstruktsiy tyazhelykh kozlovykh kranov [Application of Gradient Projection Method in Case of Optimal Design of the Metal Structures of Heavy Portal Crane]. Vestnik SGTU [Proceedings of Saratov State Technical University]. 2010, no. 1 (44), pp. 24—27.
  6. Ricardo Coelho Silva, Luiza A.P. Cantao, Akebo Yamakami. Application of an Iterative Method and an Evolutionary Algorithm in Fuzzy Optimization. Pesquisa Operacional. 2012, no. 32 (2), pp. 315—329. DOI: http://dx.doi.org/10.1590/S0101-74382012005000018.
  7. Vasil'kin A.A., Rakhmonov E.K. Sistemotekhnika optimal'nogo proektirovaniya elementov stroitel'nykh konstruktsiy [System Techniqueof Optimal Design of Construction Elements Design]. Inzhenernyy vestnik Dona [Engineering Proceedings of Don]. 2013, no. 4. Available at: http://www.ivdon.ru/magazine/archive/n4y2013/2203. Date of access: 17.03.2014.
  8. Likhtarnikov Ya.M. Variantnoe proektirovanie i optimizatsiya stal'nykh konstruktsiy [Trial Design and Optimization of Steel Structures]. Moscow, Stroyizdat Publ., 1979, 319 p.
  9. Denisova A.P., Rasshchepkina S.A. Metody optimal'nogo proektirovaniya stroitel'nykh konstruktsiy [Methods of Optimal Design of Engineering Structures]. Moscow, ASV Publ., 2012, 216 p.
  10. Sergeev N.D., Bogatyrev A.I. Problemy optimal'nogo proektirovaniya konstruktsiy [Problems of Optimal Design of Structures]. Leningrad, Stroyizdat Publ., 1971, 241 p.
  11. Rakovskiy A.E. Razrabotka metodiki optimal'nogo proektirovaniya konstruktsiy korpusa transportnykh sudov. Avtoreferat dissertatsii kandidata tekhnicheskikh nauk [Methods Development for optimal Structures Design of Transport Ship Hulls. Abstract of Dissertation of Candidate of Technical Sciences]. 05.08.02, Leningrad, 1986, 19 p.
  12. Sorokin E.S., Fayn A.M. Vybor osnovnykh parametrov proektirovaniya machty stroitel'nogo pod"emnika [Choosing the Main Design Parameters for Construction Hoist Pillar]. Stroitel'nye i dorozhnye mashiny [Construction and Road Machines]. 1989, no. 10, pp. 18—19.
  13. Valuyskikh V.P. Raschet i optimal'noe proektirovanie konstruktsiy iz tsel'noy i kleenoy drevesiny [Calculation and Optimal Design of Structures Made of Whole and Glued Wood]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 1990, no. 3, pp. 52—57.
  14. Rayzer V.D., Dolzhikov V.N., Dolzhikova E.N. Opredelenie optimal'nykh parametrov sostavnykh plastin metodom nelineynogo programmirovaniya [Determination of Optimal Parameters of Composite Slabs by the Method of Nonlinear Programming]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 1987, no. 1, pp. 21—23.
  15. Manevich A.I. Optimizatsiya szhatoy prodol'no podkreplennoy tsilindricheskoy obolochki na osnove lineynoy i nelineynoy teoriy ustoychivosti [Optimization of Compressed Longitudinally-stiffened Cylindrical Shell Basing on Linear and Non-linear Stability Theory]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 1990, no. 3, pp. 57—62.
  16. Kholopov I.S. Algoritm dvukhkriterial'noy optimizatsii pri podbore secheniy metallicheskikh konstruktsiy [Algorithm of Two Criteria Optimization in Case of Selecting Crosssections of Metal Structures]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 1990, no. 2, pp. 66—70.
  17. Zevin A.A., Klebanov B.M. Optimal'noe proektirovanie metallicheskikh opor liniy elektroperedachi [Optimal Design of Steel Supports of Power Lines]. Stroitel'naya mekhanika i raschet sooruzheniy [Construction Mechanics and Calculation of Structures]. 1987, no. 5, pp. 13—16.
  18. Lozbinev F.Yu. Optimizatsiya nesushchikh konstruktsiy kuzovov vagonov [Optimization of Load-bearing Structures of Wagon bodies]. Bryansk, TsNTI Publ., 1997, 135 p.
  19. Baccari A., Trad A. On the Classical Necessary Second-Order Optimality Conditions in The Presence of Equality and Inequality Constraints. SIAM. Journal of Optimization. 2004, vol. 15, no. 2, pp. 394—408. DOI: http://dx.doi.org/10.1137/S105262340342122X. Date of access: 21.03.2014.
  20. Ben-Tal A., Zowe J. A Unified Theory of First and Second Order Conditions for Extremum Problems in Topological Vector Spaces. Mathematical Programming Study. 1982, vol. 19, pp. 39—76. DOI: http://dx.doi.org/10.1007/BFb0120982. Date of access: 21.03.2014.

Download

Results 1 - 2 of 2