SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Influence of constructive characteristics of a room on the parameters of regulators of automated climatic systems

Vestnik MGSU 2/2015
  • Samarin Oleg Dmitrievich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Assistant Professor, Department of the Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federa- tion; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Goryunov Igor’ Ivanovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Manager, Automation of Construction Technologies Branch, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-97-80; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tishchenkova Irina Ivanovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 101-109

Currently, the successful development of construction industry depends on the improved energy performance of buildings, structures and facilities, as well as on the quality assurance of the indoor climate. In view of the above, designing and operation of buildings should be aimed at the best (optimal) solution of the following objective: to ensure the set-point values of indoor climate serviced by automated climate control systems, against the minimal energy consumption. In regard of its substantive structure, this paper describes the study on the relationship between the individual parameters of indoor thermal stability and the regulatory impact of automatic control systems (ACS). We analyzed the effect of structural room characteristics on the total energy consumption of the airflow processing unit in order to ensure energy saving. The final result is illustrated by numeric simulation with the use of a developed computer program and graphic examples. The proposed method is based on the assumption that the total thermal stability of the «room-ACVS-ACS» system is defined by heat absorption index of a room and the ACS control operation. This follows directly from the back-to-back connection of units corresponding to the room and ACVS in the scheme of automatic indoor climate control. Further study allowed authors to trace the influence of structural characteristics of a room on the total energy consumption needed for air intake treatment. This can be done by applying values of the main walling area. Basing on the developed algorithm, the authors made calculations using the computer program developed in Fortran. As a result a fragments of the program are presented - calculations of the parameters’ values included in the expressions and the total specific energy consumption for heating the air intake during the heating season, under varying room geometry, as well as the graphic illustration of the obtained relationships.

DOI: 10.22227/1997-0935.2015.2.101-109

References
  1. Gagarin V.G., Pastushkov P.P. Ob otsenke energeticheskoy effektivnosti energosberegayushchikh meropriyatiy [On Assessment of Power Efficiency of Energy Saving Measures]. Inzhenernye sistemy [Engineering Systems]. 2014, no. 2, pp. 26—29. (In Russian)
  2. Gorshkov A.S., Vatin N.I., Rymkevich P.P. Realizatsiya gosudarstvennoy programmy povysheniya energeticheskoy effektivnosti zhilykh i obshchestvennykh zdaniy [Implementation of a State Program of Power Efficiency Increase of Residential and Public Buildings]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21nd Century]. 2014, no. 1 (180), pp. 3939—3946. (In Russian)
  3. Chernov S.S. Sostoyanie energosberezheniya i povysheniya energeticheskoy effektivnosti v Rossii [State of Energy Saving and Increase of Power Efficiency in Russia]. Biznes. Obrazovanie. Pravo. Vestnik Volgogradskogo instituta biznesa [Business. Education. Law. Bulletin of the Volgograd Institute of Business]. 2013, no. 4 (25), pp. 136—140. (In Russian)
  4. Drozd D.V., Elistratova Yu.V., Seminenko A.S. Vliyanie vetra na mikroklimat v pomeshchenii [Influence of Wind on the Microclimate Indoors]. Sovremennye naukoemkie tekhnologii [Modern High Technologies]. 2013, no. 8, Part 1, pp. 37—39. (In Russian)
  5. Datsuk T., Pukhal V., Ivlev U. Forecasting of Microclimate in the Course of Buildings Design and Reconstruction. Advanced Materials Research. 2014, vol. 1020, pp. 643—648. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.1020.643.
  6. Vuksanovic D., Murgul V., Vatin N., Pukhkal V. Optimization of Microclimate in Residential Buildings. Applied Mechanics and Materials. 2014, vol. 680, pp. 459—466. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.680.459.
  7. Samarin O.D., Fedorchenko Yu.D. Vliyanie regulirovaniya sistem obespecheniya mikroklimata na kachestvo podderzhaniya vnutrennikh meteoparametrov [The Influence of Microclimate Control Systems on the Grade of Maintenance of Internal Air Parameters]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 124—128. (In Russian)
  8. Tishchenkova I.I., Goryunov I.I., Samarin O.D. Research of the Operating Mode of the Regulator in the Automatic Climate Systems for Power Saving Purposes. Applied Mechanics and Materials. 2013, vols. 409—410, pp. 634—637. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.409-410.634.
  9. Gabrielaitiene I. Numerical Simulation of a District Heating System with Emphases on Transient Temperature Behaviour. Environmental Engineering : Pap. of the 8th International Conference, May 19—20, 2011, Vilnius, Lithuania. 2011, vol. 2, pp. 747—754.
  10. Halawa E., van Hoof J. The Adaptive Approach to Thermal Comfort: A Critical Overview. Energy and Buildings. 2012, vol. 51, pp. 101—110. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.04.011
  11. Brunner G. Heat Transfer. Supercritical Fluid Science and Technology. 2014, vol. 5, pp. 228—263.
  12. Horikiri K., Yao Y., Yao J. Modelling Conjugate Flow and Heat Transfer in a Ventilated Room for Indoor Thermal Comfort Assessment. Building and Environment. 2014, vol. 77, pp. 135—147. DOI: http://dx.doi.org/10.1016/j.buildenv.2014.03.027.
  13. Tae Sup Yun, Yeon Jong Jeong, Tong-Seok Han, Kwang-Soo Youm. Evaluation of Thermal Conductivity for Thermally Insulated Concretes. Energy and Buildings. 2013, vol. 61, pp. 125—132. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.01.043.
  14. Aghayan S.A., Sardari D., Mahdavi S.R.M., Zahmatkesh M.H. An Inverse Problem of Temperature Optimization in Hyperthermia by Controlling the Overall Heat Transfer Coefficient. Journal of Applied Mathematics. 2013, Vol. 2013, 9 p. Available at: http://projecteuclid.org/euclid.jam/1394808083. Date of access: 20.12.2014. DOI: http://dx.doi.org/10.1155/2013/734020.
  15. Allaire G., Habibi Z. Second Order Corrector in the Homogenization of a Conductive-Radiative Heat Transfer Problem. Discrete and Continuous Dynamical Systems — Series B. 2013, vol. 18, no. 1, pp. 1—36. DOI: http://dx.doi.org/10.3934/dcdsb.2013.18.1.
  16. Sagis L.M.C. Dynamic Behavior of Interfaces: Modeling with Nonequilibrium Thermodynamics. Advances in Colloid and Interface Science. 2014, vol. 206, pp. 328—343.
  17. Samarin O.D., Grishneva E.A. Povyshenie energoeffektivnosti zdaniy na osnove intellektual’nykh tekhnologiy [Increasing of Building Energy Efficiency Using Smart Technologies]. Energosberezheniye i vodopodgotovka [Energy Saving and Water Treatment]. 2011, no. 5 (73), pp. 12—14. (In Russian)
  18. Meyntser S.V. Bystrovozvodimye zdaniya promyshlennogo naznacheniya [Fast-built Buildings of Industrial Function]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2009, no. 6 (8), pp. 9—11. (In Russian)
  19. Smirnov V.V., Savichev V.V. Osobennosti prognozirovaniya mikroklimata [Features of Microclimate Forecasting]. Santekhnika, otoplenie, konditsionirovanie [Bathroom Equipment, Heating, Conditioning]. 2013, no. 4 (136), pp. 71—75. (In Russian)
  20. Tabunshchikov Yu.A. Energoeffektivnye zdaniya i innovatsionnye inzhenernye sistemy [Power Effective Buildings and Innovative Engineering Systems]. Ventilyatsiya, otoplenie, konditsionirovanie vozdukha, teplosnabzhenie i stroitel’naya teplofizika [Ventilation, Heating, Air Conditioning, Heat Supply and Construction Thermophysics]. 2014, no. 1, pp. 6—11. (In Russian)

Download

Specification of indoor climate design parameters at the assessment of moisture protective properties of enclosing structures

Vestnik MGSU 11/2016
  • Kornienko Sergey Valer’evich - Volgograd State University of Architecture and Civil Engineering (VSUACE) Candidate of Technical Sciences, Associate Professor, Department of Architecture of Buildings and Structures, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 132-145

Due to wide implementation of enveloping structures with increased heat-insulation properties in modern construction here appeared a necessity to assess their moisture conditions. Assessment of moisture conditions of enveloping structures is carried out according to maximum allowable moisture state basing on determining the surface of maximum damping. In relation to it the necessity of additional vapour barrier is checked using moisture balance equation. Though the change of indoor climate parameters in premises is not taken into account in moisture balance equations defined for different seasons. The author improves the method of calculating moisture protective parameters of enclosing structures according to the maximum allowable damping state for a year and a period of moisture accumulation. It is shown in this article that accounting of temperature and relative humidity change of inside air allows specifying calculated parameters of indoor climate in residential and office rooms in assessment of moisture protective properties of enclosing structures for the case of an effective enclosing structure with a façade heat-insulation composite system. Coordinates of the maximum moistened surface of the envelope depends on indoor climate design parameters. It is concluded that the increase of requirements for moisture protection of enclosing structures when using design values of temperature and relative humidity of internal air according to the Russian regulation (SP 50.13330.2012) is not always reasonable. Accounting of changes of indoor climate parameters allows more precise assessment of moisture protective properties of enclosing structures during their design.

DOI: 10.22227/1997-0935.2016.11.132-145

Download

Thermal regime of enclosing structures in high-rise buildings

Vestnik MGSU 8/2018 Volume 13
  • Musorina Tatyana A. - Peter the Great St. Petersburg Polytechnic University (SPbPU) postgraduate student, Hydraulics and Strength Department, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation.
  • Gamayunova Ol’ga S. - Peter the Great St. Petersburg Polytechnic University (SPbPU) Senior lecturer, Department of Construction of Unique Buildings and Structures, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation.
  • Petrichenko Mikhail R. - Peter the Great St. Petersburg Polytechnic University (SPbPU) Doctor of Technical Sciences, Professor, Head of the Hydraulics and Strength Department, Peter the Great St. Petersburg Polytechnic University (SPbPU), 29 Politechnicheskaya s., St. Petersburg, 195251, Russian Federation.

Pages 935-943

Subject of research: the main heat loss occurs through the building fence. In the paper, the object of research is enclosing structures with different thermal conductivity. The problem of moisture accumulation in the wall is quite relevant. One of the main problems in construction is saving on building materials and improper design of building envelope. This in turn leads to a violation of the heat and humidity regime in the wall. This paper presents one of the methods to address this issue. Purpose: description of heat and humidity conditions in the wall fence of high-rise buildings. It is also necessary to analyze the relationship between the thermophysical characteristics. Materials and methods: the temperature distribution in the layers will be analyzed on the basis of the structure consisting of 10 layers; the layer thickness is 0.05 m. Materials with different thermal conductivity were used. Each subsequent layer differed in thermal conductivity from the previous one by 0.01. Next, these layers are mixed. The calculation of the humidity regime includes finding the temperature distribution along the thickness of the fence at a given temperature of the outside air. The quality factor of the temperature distribution is the maximum average temperature. This research are conducted in the field of energy efficiency. Results: the higher the average wall temperature, the lower the air temperature differs from the wall temperature. In addition, the higher the average temperature of the wall, the drier the surface inside the wall. However, moisture accumulates on the surface inside the room. The working capacity of multilayer enclosing structures is determined by the temperature distribution and distribution of moisture in the layers. Conclusions: moisture movement through the fence is due to the difference in the partial pressure of water vapor contained in the indoor and outdoor air. A layer with minimal thermal conductivity should be located on the outer surface of the wall in a multi-storey building. The maximum change in the amplitude of temperature fluctuations is observed in the layer adjacent to the surface by periodic thermal effects. It is also taken into account that the process of heat absorption has a great influence on the temperature change in the thickness of the wall fence to the greatest extent within the layer of sharp fluctuations (outer layer). The Central part of the wall (bearing layer) will be the driest. These calculations are satisfied with the design of the ventilated facade.

DOI: 10.22227/1997-0935.2018.8.935-943

Download

Results 1 - 3 of 3