TECHNOLOGY OF ERECTION OF PRECAST FRAME BUILDINGS AT NEGATIVE TEMPERATURES

Vestnik MGSU 4/2012
  • Afanas'ev Aleksandr Alekseevich - Moscow State University of Civil Engineering (MSUCE) Professor, Doctor of Technical Sciences, +7 (495) 287-49-14, ext. 31-25, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 175 - 180

In the article, the author describes the technological peculiarities of erection of frame buildings at negative temperatures. The author also demonstrates structural and technological peculiarities of prefabricated frame elements. The author also speaks about the technology of prefabricated production of stacked columns, pre-stressed girders, beams and hollow core slabs.
It is proven that the frame system is applicable for the construction of industrial, residential and office buildings that may have different numbers of storeys and that are flexible in terms of design concepts. Besides, the author describes the technological peculiarities of the assembly of structural elements, their temporary and permanent fixing.
The author also provides basic requirements applicable to the technology of grouting of column-to-girder joints and hollow slabs designated for a cased frame. The article also contains an analytical solution of the heat conductivity equation that describes the period of heating of connected elements. The solution makes it possible to use numerical methods to identify the depth of heating of girders and columns, depending on the ambient temperature and the duration of exposure to the heat.
The author has also analyzed the technology of grouting of precast structure joints at negative temperatures in the event of pre-heating of structural elements to be connected and the heating of the concrete mix with heating wires. The author has identified the range of rational heating modes for structural joints on the basis of the parameters of negative temperatures.

DOI: 10.22227/1997-0935.2012.4.175 - 180

References
  1. Schembakov V.G. Sborno-monolitnoe karkasnoe stroitel'stvo [Precast Monolithic Frame Construction]. Cheboksary, 2004. 96 p.
  2. Afanas'ev A.A., Minakov Yu.A. Otsenka teplovykh poley pri uskorennykh metodakh tverdeniya betona v monolitnom domostroenii [Assessment of Thermal Fields as part of Methods of Accelerated Hardening of Concrete in Monolithic House Building]. Sbornik “Teoreticheskie osnovy stroitel'stva” [Collected Works. Theoretical Foundations of Construction]. Moscow, 1999, pp. 16—22.
  3. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics]. Moscow, Nauka Publ., 1966, 724 p.
  4. Mironov S.A. Teoriya i metody zimnego betonirovaniya [Theory and Methods of Winter-time Concreting]. Moscow, S.K. Publ., 1975, 700 p.
  5. Afanas'ev A.A., Selischev K.S. Tekhnologii omonolichivaniya stykov pri vozvedenii karkasnykh zdaniy [Technology of Grouting of Joints in Construction of Frame Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 34—38.
  6. Gmyrya A.I., Korobkov S.V. Tekhnologiya betonnykh rabot v zimnikh usloviyakh [Technology of Concrete Works in Winter Conditions]. Tomsk, TGASU [Tomsk State University of Architecture and Civil Engineering], 2011, 411 p.

Download

STUDY OF INTERRELATIONBETWEEN PLASTICITY AND ELASTICITY OF METALS

Vestnik MGSU 8/2013
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-94-95; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Allattouf Hassan - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shоsse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 14-20

The operational capacity of metal materials as part of structural elements of industrial and civil buildings depends on plastic deformability of metals. This property of construction steels is assessed through the employment of the overall elongation coefficient consisting of uniform and concentrated components.For metal structural elements, assessment of steel plasticity using the uniform elongation method (rather than overall elongation) is preferable. This component characterizes the tendency of steels to brittle destruction, fatigue resistance and cold brittleness.Therefore, the study of interrelation between plasticity and elasticity of steels is very important. Dependences of impact elasticity and failure elasticity on their uniform elongation are studied. The values of impact elasticity and failure elasticity are obtained experimentally in the process of testing of the 40ХЛ grade steel hardened at the temperature of 860 °C and tempered at the temperature of 200 °C.The elongation factor is calculated using the formula of uniform elongation. For steels under consideration, formulas of impact elasticity and failure elasticity are obtained, where uniform elongation is expressed as a fraction.

DOI: 10.22227/1997-0935.2013.8.14-20

References
  1. Baldin V.A., Potapov V.N., Yakovleva V.S. Otsenivat' rabotosposobnost' konstruktsiy po ravnomernomu otnositel'nomu udlineniyu staley [Assessment of Performance of Structures on the Basis of Uniform Relative Elongation of Steels]. Promyshlennoe stroitel'stvo [Industrial Engineering]. 1976, no. 11, pp. 37—38.
  2. Baldin V.A. O raschete stal'nykh konstruktsiy na khrupkuyu prochnost' [Brittle Fracture Analysis of Steel Structures]. Stroitel'naya mekhanika i raschet sooruzheniy [Structural Analysis and Analysis of Structures]. 1969, no. 3, pp. 4—5.
  3. Gustov Yu.I., Gustov D.Yu. K razvitiyu nauchnykh osnov stroitel'nogo metallovedeniya [Development of Research Fundamentals of Metal Science in Civil Engineering]. Teoreticheskie osnovy stroitel'stva. X Rossiysko-pol'skiy seminar. Doklady. [Theoretical Fundamentals of Construction. 10th Russian-Polish Seminar. Reports] Warsaw, 2001, pp. 307—314.
  4. Gustov Yu.I., Gustov D.Yu., Voronina I.V. Metodologiya opredeleniya tribo-tekhnicheskikh pokazateley metallicheskikh materialov [Methodology for Identification of Tribo-technological Values of Metal Materials]. Teoreticheskie osnovy stroitel'stva. XVI Rossiysko-slovatsko-pol'skiy seminar. Sb. dokladov [Theoretical Fundamentals of Construction. 16th Russian-Polish Seminar. Collected Papers]. Moscow, 2007, pp. 339—342.
  5. Belikov S.B., Volchok I.P., Vil'nyanskiy A.E. Povyshenie kachestva khromistykh i margantsovistykh staley [Quality Improvement of Chromium and Manganese Steels]. Stroitel'stvo, materialovedenie, mashinostroenie. Sb. nauchn. tr. [Construction, Material Science and Machine Building. Collected research papers]. Dnepropetrovsk, PGASA Publ., 2001, no. 12, pp. 17—176.
  6. Eysmondt Yu.G. Issledovanie okhlazhdayushchikh sred, al'ternativnykh zakalochnym maslam [Research into Cooling Media Alternative to Tempering Oils]. Materialovedenie i termicheskaya obrabotka metallov [Material Science and Thermal Treatment of Metals]. 2000, no. 11, pp. 32—36.
  7. Pashkov P.O. Razryv metallov [Fracture of Metals]. Leningrad, Sudpromgiz Publ., 1960, 242 p.
  8. Bol'shakov V.I. Substrukturnoe uprochnenie konstruktsionnykh staley [Sub-structural Strengthening of Structural Steels]. Canada, 1998, 316 p.
  9. Einf?rung in die Werkstoffwissenschaft.2.Aufl.Hrsg. Leipzig, W. Schulze, VEB DVfG, 1975, 431 p.
  10. Einf?rung metallischer Werkstoffe Hrsg. Leipzig, G.Schott, VEB DVfG, 1977.
  11. Belov P.Yu., Safonov B.P., Begova A.V., Martsenko K.N. Issledovanie plastichnosti stali pri deformatsii sharikovym indentorom [Research into Steel Plasticity of Steel Exposed to Ball Penetrator Deformations]. Trudy NI RKhTU im. D.I. Mendeleeva [Works of Russian University of Chemical Technology]. Novomoskovsk, 2012, no. 9, pp. 41—43.
  12. Vinogrodov V.N., Sorokin G.M. Mekhanicheskoe iznashivanie staley i splavov [Mechanical Wear of Steels and Alloys]. Moscow, Nedra Publ., 1996, 364 p.

Download

Geoecological evaluation of water industry sludge ponds and developing the techniques of their disposal

Vestnik MGSU 2/2015
  • Chertes Konstantin L'vovich - Samara State Technical University (SSTU) Doctor of Technical Sciences, Professor, Department of Chemical Technologies and Industrial Ecology, Samara State Technical University (SSTU), 244 Molodogvardeiskay str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tupitsyna Ol'ga Vladimirovna - Samara State Technical University (SSTU) Candidate of Technical Sciences, Docent, Associate Professor, Department of Chemical Technologies and Industrial Ecology, Samara State Technical University (SSTU), 244 Molodogvardeiskay str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pystin Vitaliy Nikolayevich - Samara State Technical University (SamSTU) postgraduate student, Department of Chemical Technology and Industrial Ecology, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 110-129

Industrial water treatment is accompanied by water industry sludge formation. A great amount of methods of industrial sludge processing and utilization has been developed. Though the majority of such waste is usually being sent to sludge storages. Sludge storages take great areas, which could be practically used, and have a negative impact on the components of geological environment. Though the compositions of such sludge is close to natural soil. The elements of a comprehensive evaluation of water-management sludge ponds as raw-material sources for soil-like recultivation materials using stepwise criteria selection are presented. A comprehensive technique of pre-utilization sludge treatment is developed. The investigation results of the main stages of treatment - dewatering, mineralization, and hardening - are given. The technique offered will enable reducing the costs of the purchase of natural soils for re-cultivation as well as reducing the waste disposal costs.

DOI: 10.22227/1997-0935.2015.2.110-129

References
  1. Vaysman Ya.I., Kalinina E.V., Rudakova L.V. Ispol'zovanie material'nogo potentsiala opasnykh promyshlennykh otkhodov [Using Material Potential of Hazardous Industrial Waste]. Teoreticheskaya i prikladnaya ekologiya [Theoretical and Applied Ecology]. 2013, no. 1, pp. 27—34. (In Russian)
  2. Gulyaeva I.S., D'yakov M.S., Glushanko-va I.S., Belen'kiy M.B. Utilizatsiya osadkov stochnykh vod s polucheniem produktov, obladayushchikh tovarnymi svoystvami [Sewage Sludge Utilization Obtaining Marketable Products]. Zashchita okruzhayushchey sredy v neftegazovom komplekse [Environmental Protection in the Oil Engineering Complex]. 2012, no. 7, pp. 43—49. (In Russian)
  3. Zubkova V.I., Koren'kova S.F., Malyavs-kiy N.I. Prirodnoe i tehnogennoe nanosyr'e v proizvodstve smeshannykh vyazhushchikh [Natural and Technogenic Raw Nanomaterials in Mixed Binders Production]. Nauchno-tekhnicheskiy vestnik Povolzh'ya [The Volga Region Herald of Science and Technology]. 2013, no. 1, pp. 174—176. (In Russian)
  4. Koren'kova S.F., Yakushin I.V., Zimina V.G. Fraktal'noe modelirovanie svoystv shlamovykh otkhodov [Fractal Modeling of Sludge Properties]. Bashkirskiy khimicheskiy zhurnal [Bashkortostan Chemical Journal]. 2007, no. 4, vol. 14, pp. 114—119. (In Russian)
  5. Nikolaeva L.A., Khusaenova A.Z. Energo- i resursosberegayushchaya tekhnologiya utilizatsii shlama khimvodoochistki TES [Energy- and Resources-Saving Technique of Utilizing Thermal-Power Station Chemical Water-Treatment Sludge]. Teploenergetika [Heat Power Engineering]. 2014, no. 5, pp. 69—74. (In Russian)
  6. Nikolaeva L.A., Golubchikov M.A., Zakharova S.V. Izuchenie sorbtsionnykh svoystv shlama osvetliteley pri ochistke stochnykh vod TES ot nefteproduktov [An Investigation into Clearers Sludge Sorption Properties in Oil-Products Removing from Thermal Power-Station Sewage]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki [News of Higher Educational Institutions. Power Engineering Problems]. 2012, no. 9—10, pp. 86—91. (In Russian)
  7. Nikolaeva L.A., Nedzvetskaya R.Ya. Issledovanie utilizatsii shlama vodopod-gotovki TES v kachestve sorbenta pri biologicheskoy ochistke stochnyh vod promyshlennyh predpriyatiy [An Investigation into Utilizing Thermal Power- Station Water-Treatment Sludge as a Sorbent in Biological Treatment of Industrial Enterprise Sewage]. Voda: Himiya i Ekologiya [Water: Chemistry and Ecology]. 2012, no. 8 (50), pp. 80—84. (In Russian)
  8. Nikolaeva L.A., Kalyapina S.A. Ispol'zovanie shlama khimvodoochistki TES v proizvodstve polimernykh kompozitov [Using the Sludge of Chemical Water Treatment at Thermal Power Stations in Polymer Composites Production]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2011, no. 11, pp. 7—9. (In Russian)
  9. Nikolaeva L.A., Boroday E.N., Golubchikov M.A. Sorbtsionnye svoystva Shlama osvetliteley pri ochistke stochnykh vod elektrostantsiy ot nefteproduktov [Clearers Sludge Sorption Properties in Removing Oil-Products from Thermal Power-Station Sewage]. Izvestiya vuzov. Problemy energetiki [News of Higher Educational Institutions. Power Engineering Problems]. 2011, no. 1—2, pp. 132—136. (In Russian)
  10. Laptev A.G., Boroday E.N., Nikola- eva L.A. Novye vozmozhnosti utilizatsii shlamov khimicheskoy vodopodgotovki na TES [New Possibilities of Utilizing Chemical Water Treatment Sludge of Thermal Power-Stations]. Voda: Khimiya i Ekologiya [Water: Chemistry and Ecology]. 2009, no. 3, pp. 2—5. (In Russian)
  11. Tarakanov O.V., Pronina T.V., Tarakanov A.O. Primenenie mineral'nykh shlamov v proizvodstve stroitel'nykh rastvorov [Mineral Sludge Using in Building-Slurries Production]. Stroitel'nye materialy [Building Materials]. 2008, no. 4, pp. 68—70. (In Russian)
  12. Chumachenko N.G., Koren'kova E.A. Promyshlennye othody — perspektivnoe syr'e dlya proizvodstva stroitel'nykh materialov [Industrial Waste as Promising Raw Materials for Building Materials Production]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering] 2014, no. 3, pp. 20—24. (In Russian)
  13. Cerqueira M.B.R., Caldas S.S., Primel E.G. New Sorbent in the Dispersive Solid Phase Extraction Step of Quick, Easy, Cheap, Effective, Rugged, and Safe for the Extraction of Organic Contaminants in Drinking Water Treatment Sludge. Journal of Chromatography A. April 4, 2014, vol. 1336, рp.10—22. DOI: http://dx.doi.org/10.1016/j.chroma.2014.02.002.
  14. Zhou Zhiwei, Yang Yanling, Li Xing, Wang Weiqiang, Wu Yan, Wang Changyu, Luo Jianliang. Coagulation Performance and Flocs Characteristics of Recycling Pre-sonicated Condensate Sludge for Low-turbidity Surface Water Treatment. Separation and Purification Technology. 2014, vol. 123, pр. 1—8. DOI: http://dx.doi.org/10.1016/j.seppur.2013.12.001.
  15. Zhou Zhiwei, Yang Yanling, Li Xing, Gao Wei, Liang Heng, Li Guibai. Coagulation Efficiency and Flocs Characteristics of Recycling Sludge during Treatment of Low Temperature and Micro-polluted Water. Journal of Environmental Sciences. 2012, vol. 24, no. 6, pр. 1014—1020. DOI: http://dx.doi.org/10.1016/S1001-0742(11)60866-8.
  16. Verrelli D.I., Dixon D.R., Scales P.J. Effect of Coagulation Conditions on the Dewatering Properties of Sludges Produced in Drinking Water Treatment. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009, vol. 348, no. 1—2, pр. 14—23.
  17. Palomo M., Penalver A., Aguilar C., Borrull F. Presence of Naturally Occurring Radioactive Materials in Sludge Samples from Several Spanish Water Treatment Plants. Journal of Hazardous Materials. 2010, vol. 181, pр. 716—721.
  18. Xu G.R., Yan Z.C., Wang Y.C., Wang N. Recycle of Alum Recovered from Water Treatment Sludge in Chemically Enhanced Primary Treatment. Journal of Hazardous Materials. 2009, vol. 161, no. 2—3, pр. 663—669. DOI: http://dx.doi.org/10.1016/j.jhazmat.2008.04.008.
  19. Sun J., Pikaar I., Sharma K.R., Keller J., Yuan Z. Feasibility of Sulfide Control in Sewers by Reuse of Iron Rich Drinking Water Treatment Sludge. Water Research. 2015, vol. 7, no. 1, pр. 150—159. DOI: http://dx.doi.org/10.1016/j.watres.2014.12.044.
  20. Keeley J., Smith A.D., Judd S.J., Jarvis P. Reuse of Recovered Coagulants in Water Treatment: An Investigation on the Effect Coagulant Purity has on Treatment Performance. Separation and Purification Technology. 2014, vol. 131, pр. 69—78. DOI: http://dx.doi.org/10.1016/j.seppur.2014.04.033.
  21. Huang C.-H., Wang S.-Y. Application of Water Treatment Sludge in the Manufacturing of Lightweight Aggregate. Construction and Building Materials. 2013, vol. 43, pр. 174—183. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2013.02.016.
  22. Kizinievic O., Zurauskiene R., Kizinievic V., Zurauskas R. Utilisation of Sludge Waste from Water Treatment for Ceramic Products. Construction and Building Materials. 2013, vol. 41, pр. 464—473. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2012.12.041.
  23. Sales A., Rodrigues de Souza F. Concretes and Mortars Recycled with Water Treatment Sludge and Construction and Demolition Rubble. Construction and Building Materials. 2009, vol. 23, no. 6, pр. 2362—2370. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2008.11.001.
  24. Lebigue C.J., Andriantsiferana C., Krou N’G., Ayral C., Mohamed E., Wilhelm A.-M., Delmas H., Le Coq L., Gerente C., Smith K.M., Pullket S., Fowler G.D., Graham N.J.D. Application of Sludge-based Carbonaceous Materials in a Hybrid Water Treatment Process Based on Adsorption and Catalytic Wet Air Oxidation. Journal of Environmental Management. 2010, vol. 91 (12), pр. 2432—2439. DOI: http://dx.doi.org/10.1016/j.jenvman.2010.06.008.
  25. Siswoyo E., Mihara Y., Tanaka S. Determination of Key Components and Adsorption Capacity of a Low Cost Adsorbent Based on Sludge of Drinking Water Treatment Plant to Adsorb Cadmium Ion in Water. Applied Clay Science. 2014, vol. 97—98, pр. 146—152. DOI: http://dx.doi.org/10.1016/j.clay.2014.05.024.
  26. Sales A., De Souza F.R., Almeida F.D.C.R. Mechanical Properties of Concrete Produced with a Composite of Water Treatment Sludge and Sawdust. Construction and Building Materials. 2011, vol. 25, no. 6, pр. 2793—2798.
  27. Rotermel' M.V., Buchel'nikov D.Yu., Krasnenko T.I., Sirina T.P. Shlamy khimicheskoy vodopodgotovki: sostav, svoystva, perspektivy retsiklinga [Chemical Water-Treatment Sludge: the Composition, Properties, Recycling Prospects]. Tekhnosfernaya bezopasnost' [Technosphere Safety]. 2014, no. 1 (2). Available at: http://uigps.ru/sites/default/files/journal/stat%20PB%202/12.pdf. Date of access: 20.12.2014. (In Russian)
  28. Zinck J., Griffith W. Review of Mine Drainage Treatment and Sludge Manage- Operations. Project 603054, REPORT CANMET-MMSL 10-058(CR). Version — March 2013, 101 p.
  29. Sotero-Santos R.B., Rocha O., Povinelli J. Evaluation of Water Treatment Sludges Toxicity Using the Daphnia Bioassay. Water Research. 2005, vol. 39, no. 16, pр. 3909—3917. DOI: http://dx.doi.org/10.1016/j.watres.2005.06.030.
  30. Tupitsyna O.V., Gladyshev N.G. Kuzne-tsova M.S., Pirozhkov D.A., Chertes K.L., Tarasova I.V., Bykov D.E. Reabilitatsiya territoriy, degradirovannykh v rezul'tate deyatel'nosti opasnykh proizvodstv [Rehabilitation of the Areas Degraded through Hazardous Industries Activities]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2011, no. 3, pp. 30—32. (In Russian)
  31. Tupitsyna O.V., Kompleksnaya geoekologicheskaya sistema issledovaniya i vosstanovleniya tekhnogenno narushennykh territoriy [Integrated Geo-Ecological System of Investigation and Restoration of Man-Caused Disturbed Areas]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2011, no. 3, pp. 35—38. (In Russian)
  32. Chertes K.L., Bykov D.E., Enduraeva N.N., Tupitsyna O.V. Rekul'tivatsiya otrabotannykh kar'erov [Recultivation of the Fulfilled Pits]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2002, no. 11, pp. 18—22. (In Russian)
  33. Avtomobil'nye dorogi i mosty. Stroitel'stvo konstruktivnykh sloev dorozhnykh odezhd iz gruntov, ukreplennykh vyazhushchimi materialami : obzornaya informatsiya [Automobile Roads and Bridges. Road-Coating Structural Layers Construction of Soils Hardened with Binders : General Information]. Moscow, Informavtodor Publ., 2007, issue 3. (In Russian)
  34. Tupitsyna, O.V., Kamburg V.G., Chertes K.L., Bykov D.E. Kriterial'naya otsenka sostoyaniya narushennykh geosistem [Criteria Evaluation of the Condition of Disturbed Geosystem]. Neftegazovoe delo [Petroleum Engineering]. 2012, no. 4, pp. 231—241. Available at: http://www.ogbus.ru/authors/Tupitsyna/Tupitsyna_2.pdf. Date of access: 20.12.2014. (In Russian)
  35. Lanis A.L., Khan Gil Nam. Modifikatsiya modeli geosredy dlya resheniya zadach mekhaniki gruntov metodom diskretnykh elementov [Modification of Geoenvironment Model for Solving the Problem of Soil Mechanics by Discrete Element Method]. Vestnik Tomskogo GASU [Bulletin of Tomsk State Architectural and Construction University]. 2013, no. 1 (38), pp. 273—281. (In Russian)
  36. Aksenov V.I., Ladygichev M.G., Nichkova I.I., Nikulin V.A., Klyayn S.E., Aksenov E.V. Vodnoe khozyaystvo promyshlennykh predpriyatiy: spravochnoe izdanie [Industrial Enterprises’ Water Management: Reference Book]. In 2 volumes. Moscow, Teplotekhnik Publ., 2005, vol. 1, 640 p. (In Russian)
  37. Safonova N.A., Chertes K.L., Tupitsyna O.V., Pystin V.N., Kalinkina K.D., Burlaka V.A., Bykov D.E. Kompleksnaya sistema obrashcheniya s burovymi shlamami s ispol'zovaniem gokonteynernoy obrabotki [A Complex System of Drillings Treatment Using Geocontainer Treatment]. Neftegazovoe delo [Petroleum Engineering]. 2012, no. 4, pp. 274—284. Available at: http://www.ogbus.ru/authors/Safonova/ Safonova_1.pdf. Date of access: 23.12.2014. (In Russian)
  38. Safonova N.A., Tupitsyna O.V., Chertes K.L., Shterenberg A.M., Yarygina A.A., Pystin V.N., Bykov D.E. Kompleksnaya sistema obrabotki i utilizatsii burovykh shlamov pri pomoshchi fil'truyushchikh obolochek [A Complex System of Drillings Treatment and Utilization Using Membranes]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2011, no. 7, pp. 11—17. (In Russian)
  39. Bykov D.E., Tupitsyna O.V., Gladyshev N.G., Zelentsov D.V., Gvozdeva N.V., Samarina O.A., Tsimbalyuk A.E., Chertes K.L. Kompleks biodestruktsii nefteothodov [Biodegradation Complex for Oil-Processing Waste]. Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2011, no. 3, pp. 33—34. (In Russian)
  40. Andreev S.Yu. Matematicheskoe modelirovanie protsessa aerirovaniya [Mathematical Simulation of Aeration Process]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Equipment]. 2007, no. 3, pp. 34—37. (In Russian)
  41. Razrabotka sistemy utilizatsii shlama. Razrabotka kompleksnoy tekhnologii obezvozhivaniya i konversii shlama vodopodgotovki TETs v rekul'tivatsionno-stroitel'nyy material OAO «KNPZ» [Development of Sludge Utilization System. Development of a Comprehensive Technique for Thermal Power-Station Water Treatment Sludge Dewatering and Converting It into a Re-cultivation Building Material of Kuibyshev Petroleum Refinery Stock Company]. Project 50-10/10-0620-NIOKR-2. Samara, OOO «EnergoProektStroyIzyskaniya» Publ., 2011, 175 p. (In Russian)
  42. OZKh NPZ. Bufernyy prud. Rekonstruktsiya [Offsite Facility PR. Balancing Pond. Reconstruction]. Project 447/11//11-0711.157-P-101.510.001. GOU VPO SamGTU NTsPE Publ., Samara, 2012, 138 p. (In Russian)
  43. Stroitel'stvo ploshchadki dlya provedeniya biodestruktsii neftesoderzhashchikh otkhodov v tsekhe № 11 OAO «NkNPZ» [Construction of a Site for Carrying Out Oil-Containing Waste Biodegradation in Workshop 11 of “KPR” Stock Company]. Project 3281214/0611D/116/14, FGBOU VPO «SamGTU» Publ., Samara, 2014, 86 p. (In Russian)

Download

CREEP AND LONG-TERM BEARING CAPACITY OF LONG PILES SUBMERGED INTO THE CLAY SOIL MASSIF

Vestnik MGSU 1/2013
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (MGSU) +7 (499) 261-59-88, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sidorov Vitaliy Valentinovich - National Research Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Professor of the Department Soil Mechanics and Geotechnics, Researcher at the Research and Education Center «Geotechnics», National Research Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ter-Martirosyan Karen Zavenovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 109-115

Interaction between long piles and the adjacent soil has a spatial and temporal nature. This phenomenon is based on a set of non-linear and rheological properties of soils. Distribution of lateral forces between the surface and the pile toe is heavily dependent on the above properties. The process of formation of the stress-strain state around the pile can demonstrate decaying, constant or progressive velocity depending on the rheological processes in the soil that may be accompanied by hardening and softening processes at one and the same time. These processes may be caused by destruction and restoration of ties between clay soil particles, soil compaction and de-compaction. Predominance of the process of hardening leads to damping, while predominance of the process of softening causes progressive destruction. Description of this multi-component process depends on the rheological model of the soil. This research is based on the modified rheological model originally designed by Maxwell. The authors consider solutions to the problem of quantification of the stressstrain state of soil around the pile and their interaction. This research makes it possible to project motion patterns of long piles over the time and evaluate the limit of their long-term bearing capacity.

DOI: 10.22227/1997-0935.2013.1.109-115

References
  1. Vyalov S.S. Reologicheskie osnovy mekhaniki gruntov [Rheological Fundamentals of Soil Mechanics]. Moscow, Vyssh. shk. publ.,1978, 442 p.
  2. Meschyan S.R. Eksperimental’nye osnovy reologii glinistykh gruntov [Experimental Fundamentals of Rheology of Clay Soils]. Moscow, 2008, 805 p.
  3. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p.
  4. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14.

Download

Microtopographic parameters of friction surfaces of construction machinery and equipment

Vestnik MGSU 9/2012
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Mechanical Equipment, Elements of Machines and Technology of Metals 8 (499) 183-94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lyubushkin Kirill Aleksandrovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanical Equipment, Elements of Machines and Technology of Metals 8 (499) 183- 94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orekhov Aleksey Aleksandrovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Mechanical Equipment, Elements of Machines and Technology of Metals 8 (499) 183- 94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 179 - 184

The article covers the concepts, definitions and correlations of parameters of worn surfaces
within the coordinate system of relative pressures and convergences of interacting elements of
construction machines.
The authors provide their findings based on the research of microtopographic and tribological
engineering parameters of scoop hinges of construction drags and fused crushing plates of jaw
crushers. As for the drag hinges, the friction pair is to include steel 110Г1ZL and X-5 padding that
demonstrates high resistance to friction (=1.04) and low temperature of frictional heating (ƒ= 90
°C). Mobile plates of jaw crushers need electrodes VSN-9 and TsN-16 for padding purposes, as they
demonstrate the biggest frictional fatigue values (= 2.76 and 2.62, respectively) and insignificant
temperature of heating of friction surfaces (9.4 and 4.9 °C). Electrodes TsN-16, T-590 and KBKh-45
are recommended for fixed plates.
Microtopographic parameters of worn friction surfaces are used to analyze the main tribological
engineering parameters of operating elements and joints of construction machines and items of
equipment.

DOI: 10.22227/1997-0935.2012.9.179 - 184

References
  1. Gustov Yu.I. Povyshenie iznosostoykosti rabochikh organov i sopryazheniy stroitel’nykh mashin [Improvement of Wearability of Operating Elements and Joints of Construction Machines]. Moscow, MGSU Publ., 1994, 529 p.
  2. Korobko V. I. Zolotoe sechenie i problemy garmonii sistem [The Golden Section and Problems of Harmony of Systems]. CIS ASV Publ., Moscow, 1998, 373 p.
  3. Chihos H. Sistemnyy analiz v tribonike [The System Analysis in Tribology]. Moscow, MIR Publ., 1982, 351 p.
  4. Gustov Yu.I. Tribotekhnika stroitel’nykh mashin i oborudovaniya [Tribological Engineering of Construction Machines and Equipment]. Moscow, MGSU Publ., 2011, 192 p.
  5. Hebda M., Wachal A.. Trybologja. Wydawnictwa naukowo-techniczne. Warszawa, 1980, 611 p.
  6. Petrescu Florin Nicolae. Trjbologie. Institutul de Constructii Bucuresti. 1986, 275 p.
  7. Gustov Yu.I., Gustov D.Yu., Voronina I.V. Metodologiya opredeleniya tribotekhnicheskikh pokazateley metallicheskikh materialov [Methodology of Identification of Tribological Parameters of Metal Materials]. Collected works of the 16th Slovak-Russian-Polish Seminar “Theoretical Basics of Construction”. Zilina, Slovak Republic, 2007, pp. 339—342.
  8. Babichev A.P., Babushkina N.A., Bratkovskiy A.M. Fizicheskie velichiny: spravochnik [Physical Values: Reference Book]. Moscow, Energoatomizdat Publ., 1991, 1232 p.
  9. Gustov Yu.I., Voronina I.V. Modernizatsiya i remont samokhodnykh mashin [Modernization and Repair of Self-propelled Machines]. Materials of International Scientific and Technical Conference «Interstroymekh-2007». Samara, SGASU Publ., 2007, pp. 238—242.

Download

Geoecological rationale of the development of housing and communal services sludge storages by the method of multidimensional data processing

Vestnik MGSU 6/2015
  • Chertes Konstantin L’vovich - Samara State Technical University (SamSTU) Doctor of Technical Sciences, Professor, Department of Chemical Technology and Industrial Ecology, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tupitsyna Ol’ga Vladimirovna - Samara State Technical University (SamSTU) Doctor of Technical Sciences, Associate Professor, Department of Chemical Technology and Industrial Ecology, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pystin Vitaliy Nikolaevich - Samara State Technical University (SamSTU) postgraduate student, Department of Chemical Technology and Industrial Ecology, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ermakov Vasiliy Vasil’evich - Samara State Technical University (SamSTU) Senior Lecturer, Department of Chemical Technology and Industrial Ecology, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ramenskaya Ekaterina Vyacheslavovna - Samara State Technical University (SamSTU) postgraduate student, Department of Chemical Technology and Industrial Ecology, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shterenberg Aleksandr Moiseevich - Samara State Technical University (SamSTU) Doctor of Physical and Mathematical Sciences, Professor, chair, Department of General Physics and Physics of Oil and Gas Industry, Samara State Technical University (SamSTU), 244 Molodogvardeyskaya str., Samara, 443100, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 88-102

The activity of housing services and utilities results in great amounts of waste: sludge of water and wastewater utilities, waste waters of TPPs and recycling water supply. The known ways of such waste utilization are related to production of construction materials and secondary reactants for wastewater treatment. Though the volumes of sludge most often exceed the regional demand in raw materials for local construction materials or coagulants. Moreover sludge as man-made raw material cannot compete with their natural analogues in terms of quality.The basic characteristics of housing and communal services sludge storages were considered from the perspective of their target development. The system of state assessment of sludge storages was represented by the multidimensional data analysis. The waste disposal facilities considered in this study were classified into three groups from the perspective of the feasibility and practicability of their abandoning. An example of the digital matrix of waste disposal facilities’ condition was given. The constructive and technological design of the system of recultivating materials production was given.

DOI: 10.22227/1997-0935.2015.6.88-102

References
  1. Gulyaeva I.S., D’yakov M.S., Glushankova I.S., Belen’kiy M.B. Utilizatsiya osadkov stochnykh vod s polucheniem produktov, obladayushchikh tovarnymi svoystvami [Utilization of Wastewater Sludge with Obtaining Marketable Products]. Zashchita okruzhayushchey sredy v neftegazovom komplekse [Environmental Protection in Oil and Gas Sector]. 2012, no. 7, pp. 43—49. (In Russian)
  2. Zubkova V.I., Koren’kova S.F., Malyavskiy N.I. Prirodnoe i tekhnogennoe nanosyr’e v proizvodstve smeshannykh vyazhushchikh [Natural and Technogenic Nano Raw Material in Production of Mixed Binder]. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Proceedings of the Volga Region]. 2013, no. 1, pp. 174—176. (In Russian)
  3. Nikolaeva L.A., Golubchikov M.A., Zakharova S.V. Izuchenie sorbtsionnykh svoystv shlama osvetliteley pri ochistke stochnykh vod TES ot nefteproduktov [Investigation of Sorption Properties of Clearing Agent Sludge at TPP Wastewater Treatment from Oil Products]. Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki [News of Higher Educational Institutions. Problems of Energy Sector]. 2012, no. 9—10, pp. 86—91. (In Russian)
  4. Nikolaeva L.A., Nedzvetskaya R.Ya. Issledovanie utilizatsii shlama vodopodgotovki TES v kachestve sorbenta pri biologicheskoy ochistke stochnykh vod promyshlennykh predpriyatiy [Investigation of TPP Wastewater Sludge Utilization as Sorbent at Biological Wastewater Treatment at Industrial Plants]. Voda: khimiya i ekologiya [Water: Chemistry and Ecology]. 2012, no. 8, pp. 80—84. (In Russian)
  5. Tarakanov O.V., Pronina T.V., Tarakanov A.O. Primenenie mineral’nykh shlamov v proizvodstve stroitel’nykh rastvorov [The Use of Mineral Sludge in Production of Construction Mortars]. Stroitel’nye materialy [Construction Materials]. 2008, no. 4, pp. 68—70. (In Russian)
  6. Chumachenko N.G., Koren’kova E.A. Promyshlennye otkhody — perspektivnoe syr’e dlya proizvodstva stroitel’nykh materialov [Industrial Waste — Perspective Raw Material for Construction Materials Production]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 3, pp. 20—24. (In Russian)
  7. Maristela B.R. Cerqueira, Sergiane S. Caldas, Ednei G. Primel. New Sorbent in the Dispersive Solid Phase Extraction Step of Quick, Easy, Cheap, Effective, Rugged, and Safe for the Extraction of Organiccontaminants in Drinking Water Treatment Sludge. Journal of Chromatography A. 2014, vol. 1336, pp. 10—22. DOI: http://dx.doi.org/10.1016/j.chroma.2014.02.002.
  8. Zhou Z., Yang Y., Li X., Wang W., Wu Y., Wang C., Luo J. Coagulation Performance and Flocs Characteristics of Recycling Pre-Sonicated Condensate Sludge for Low-Turbidity Surface Water Treatment. Separation and Purification Technology. 2014, vol. 123, pp. 1—8. DOI: http://dx.doi.org/10.1016/j.seppur.2013.12.001.
  9. Zhou Z., Yang Y., Li X., Gao W., Liang H., Li G. Coagulation Efficiency and Flocs Characteristics of Recycling Sludge During Treatment of Low Temperature and Micro-Polluted Water. Journal of Environmental Sciences. 2012, 24 (6), pp. 1014—1020. DOI: http://dx.doi.org/10.1016/S1001-0742(11)60866-8.
  10. David I. Verrelli, David R. Dixon, Peter J. Scales. Effect of Coagulation Conditions on the Dewatering Properties of Sludges Produced in Drinking Water Treatment. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009, vol. 348, no. 1—3, pp. 14—23. DOI: http://dx.doi.org/10.1016/j.colsurfa.2009.06.013.
  11. Palomo M., Penalver A., Aguilar C., Borrull F. Presence of Naturally Occurring Radioactive Materials in Sludge Samples from Several Spanish Water Treatment Plants. Journal of Hazardous Materials. 2010, no. 181 (1-3), pp. 716—721. DOI: http://dx.doi.org/10.1016/j.jhazmat.2010.05.071.
  12. Xu G.R., Yan Z.C., Wang Y.C., Wang N. Recycle of Alum Recovered from Water Treatment Sludge in Chemically Enhanced Primary Treatment. Journal of Hazardous Materials. 2009, vol. 161, no. 2-3, pp. 663—669.
  13. Jing Sun, Ilje Pikaar, Keshab Raj Sharma, Jurg Keller, Zhiguo Yuan. Feasibility of Sulfide Control in Sewers by Reuse of Iron Rich Drinking Water Treatment Sludge. Water Research. 2015, vol. 71, pp. 150—159. DOI: http://dx.doi.org/10.1016/j.watres.2014.12.044.
  14. Keeley James, Smith Andrea D., Judd Simon J., Jarvis Peter. Reuse of Recovered Coagulants in Water Treatment: an Investigation on the Effect Coagulant Purity Has on Treatment Performance. Separation and Purification Technology. 2014, no. 131, pp. 69—78.
  15. Chung-Ho Huang, Shun-Yuan Wang. Application of Water Treatment Sludge in the Manufacturing of Lightweight Aggregate. Construction and Building Materials. 2013, vol. 43, pp. 174—183. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2013.02.016.
  16. Kizinievic O., Zurauskiene R., Kizinievic V., Zurauskas R. Utilisation of Sludge Waste from Water Treatment for Ceramic Products. Construction and Building Materials. 2013, vol. 41, pp. 464—473. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2012.12.041.
  17. Almir Sales, Francis Rodrigues de Souza. Concretes and Mortars Recycled with Water Treatment Sludge and Construction and Demolition Rubble. Construction and Building Materials. 2009, vol. 23, no. 6, pp. 2362—2370. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2008.11.001.
  18. Carine Julcour Lebigue, Caroline Andriantsiferana, N’Guessan Krou, Catherine Ayral, Elham Mohamed, Anne-Marie Wilhelm, Henri Delmas, Laurence Le Coq, Claire Gerente, Karl M. Smith, Suangusa Pullket, Geoffrey D. Fowler, Nigel J.D. Graham. Application of Sludge-Based Carbonaceous Materials in a Hybrid Water Treatment Process Based on Adsorption and Catalytic Wet Air Oxidation. Journal of Environmental Management. 2010, no. 91 (12), pp. 2432—2439. DOI: http://dx.doi.org/10.1016/j.jenvman.2010.06.008.
  19. Siswoyo E., Mihara Y., Tanaka S. Determination of Key Components and Adsorption Capacity of a Low Cost Adsorbent Based on Sludge of Drinking Water Treatment Plant to Adsorb Cadmium Ion in Water. Applied Clay Science. 2014, vol. 97—98, pp. 146—152. DOI: http://dx.doi.org/10.1016/j.clay.2014.05.024.
  20. Almir Sales, Francis Rodrigues de Souza, Fernando do Couto Rosa Almeida. Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust. Construction and Building Materials. 2011, vol. 25, no. 6, pp. 2793—2798. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2010.12.057.
  21. Rotermel’ M.V., Buchel’nikov D.Yu., Krasnenko T.I., Sirina T.P. Shlamy khimicheskoy vodopodgotovki: sostav, svoystva, perspektivy retsiklinga [Chemical Water Treatment Sludge: Composition, Properties, Recycling Prospect]. Tekhnosfernaya bezopasnost’ [Technosphere Safety]. 2014, no. 1 (2). Available at: http://uigps.ru/sites/default/files/jyrnal/stat%20PB%202/12.pdf. Date of access: 20.12.2014. (In Russian)
  22. Review of Mine Drainage Treatment and Sludge Management Operations Project 603054. REPORT CANMET-MMSL 10-058(CR). Version-March 2013.
  23. Kriven’ A.P. Vybor oborudovaniya dlya obezvozhivaniya osadkov stochnykh vod i proizvodstvennykh shlamov [Choosing the Equipment for Wastewater and Industrial Sludge Dewatering]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2012, no. 5, pp. 67—74. (In Russian)
  24. Boizonella D., Cavinato C., Fatone F., et al. High Rate Mesophilic, Thermophilic, and Temperature Phased Anaerobic Digestion of Waste Activated Sludge. A Pilot Scale Study. Waste Management. 2012, vol. 32, no. 6, pp. 1196–1201.
  25. Dmitriev V.V. Opredelenie integral’nogo pokazatelya sostoyaniya prirodnogo ob”ekta kak slozhnoy sistemy [Measuring the Integral Index of an Natural Object’s State as a Complicated System]. Obshchestvo. Sreda. Razvitie [Society. Environment. Development]. 2009, no. 4, pp. 146—165. (In Russian)
  26. Pryakhin S.I. Metodika geoekologicheskogo analiza prirodno-tekhnicheskikh geosistem yuga Privolzhskoy vozvyshennosti (v predelakh Volgogradskoy oblasti) [Methods of Geoecological Analysis of Netural-Technical Geosystems of the South of Volga Upland (Within the Volgograd Region)]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geografiya. Geoekologiya [Proceedings of Voronezh State University. Series: Geography, Geoecology]. 2007, no. 2, pp. 78—86. (In Russian)
  27. Lied T.T., Geladi P., Esbensen K.H. Multivariate Image Regression (MIR): Implementation of Image PLSR — First Forays. Chemometrics. 2000, vol. 14, no. 5—6, pp. 585—599. DOI: http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/63.0.CO;2-Q
  28. Bykov D.E., Tupitsyna O.V., Gladyshev N.G., Zelentsov D.V., Gvozdeva N.V., Samarina O.A., Tsimbalyuk A.E., Chertes K.L. Kompleks biodestruktsii nefteotkhodov [Biodegradation Complex for Oil-Processing Waste]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2011. No. 3. Pp. 33—34. (In Russian)

Download

Results 1 - 6 of 6