-
Primin Oleg Grigorievich -
MosvodokanalNIIproekt
Doctor of technical Sciences, Professor, Deputy General Director, MosvodokanalNIIproekt, 22 Pleteshkovsky per., Moscow, 105005, Russian Federation.
-
Gromov Grigory Nikolaevich -
MosvodokanalNIIproekt
Head of the Department for the design of sewage and water supply facilities, MosvodokanalNIIproekt, 22 Pleteshkovsky per., Moscow, 105005, Russian Federation.
-
Ten Adilovic Andrey -
Joint Stock Company Mosvodokanal
Sewage Network Operations Division Deputy Chief Engineer, Joint Stock Company Mosvodokanal, 2 Pleteshkovsky lane, Moscow, 105005, Russian Federation.
Subject: the deterioration and technical condition of water supply and drainage pipelines in most of Russia’s settlements, the limitation of material resources for their restoration and renovation in conditions of housing and communal services reform, require a scientifically grounded approach to the reconstruction and modernization of these systems [1-4]. To solve these problems, the Government of the Russian Federation approved and introduced normative documents1, 2. According to them, the development of centralized water supply and water disposal systems is carried out only in accordance with the general schemes of these systems3. As part of these schemes, it is necessary to develop an electronic model of a centralized water supply and disposal system for an objective assessment of the impact of activities aimed at optimizing their work [5]. The algorithm for constructing and calibrating the electronic model of the city’s water supply system is the subject of this study. Research objectives: development of a methodology for constructing electronic models and algorithms of calibrations which are applicable to the Russian Zulu software. Materials and methods: for an objective assessment of the impact of long-term measures aimed at improving the operation of the water supply network, as well as the development of the city’s water supply system, we use modeling along with the implementation of an adequate electronic model. The adequacy of the electronic model is achieved via its calibration [6]. The object of the research is the water supply system of Minsk and Salavat in the development of electronic models for realization of their development and reconstruction directions. Results: based on the experience of implementation of a number of water supply systems (Ufa, Irkutsk, Penza, Orenburg, Tyumen, Salavat, Minsk), a methodology for constructing and calibrating electronic models was developed; the algorithms applicable to the Russian Zulu software and necessary for construction of models were also developed. Conclusions: the results of the work are implemented on a number of water supply systems in the cities of Russia and can be recommended for application of information technologies in electronic model realization, the assessment and analysis of the functioning of water supply systems and the optimization of their operation.
DOI: 10.22227/1997-0935.2018.7.847-854
-
Orekhov Vyacheslav Valentinovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, chief research worker, Scientific and Technical Center “Examination, Design, Inspection”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Khokhotva Sergey Nikolaevich -
Moscow branch of ENEX
Deputy Head, Centre of Hydraulic Structures Safety, Moscow branch of ENEX, 13 Vol’naya str., Moscow, 105118, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
Mathematical hydrogeology model of the territory of Kowsar Project was created with account for the results of the engineering surveys and hydro geological monitoring, which was conducted in the process of Kowsar Project construction. In order to create the model in the present work a universal computer system Ansys was used, which implements the finite element method and solid modeling technology, allowing to solve the filtration problem with the use of thermal analogy. The three-dimensional geometric model was built with use of the principle “hard body” modeling, which displays the main line of the territory relief, including the created water reservoir, geological structure (anticline Duk) and the main lithological complexes developed within the territory. In the limestone mass As here is a zone characterized by water permeability on territory of Kowsar Project, and a layer characterized by seepage feeding, which occurs outside the considered territory. The water reservoir is a source of the change of hydro geological situation. The results of field observations witness, that the levels of underground waters within the area of the main structures reacts almost instantly on the water level change in the water reservoir; the delay period of levels change is not more than 1,5…2,0 weeks at maximum distance from the water reservoir. These particularities of the hydro geological regime allow using the steady-state scheme of the decision of forecast problems. The mass of limestone As, containing the structures of the Kowsar Project, is not homogeneous and anisotropy in its seepage characteristics. The heterogeneity is conditioned by exogenous influence on the mass up to the depth of 100…150 m. The seepage anisotropy of the mass is expressed by the difference of water permeability of the mass along and across the layers for almost one order. The structures of Kowsar Project is presented by a dam, grouting curtain on axis of the dam and consolidation curtain in its both banks, drainage structures. Underground waters of the territory are formed by infiltration. They unload in river Heirabad. In accordance with this circumstance, the northwest (the right bank) and the south-east (the left bank) hydro geological borders of the model are the borders with constant discharge seepage, entering from the area of the feeding in the area of unloading. The borders are distanced from the river on 2,5 km. In accordance with the regional direction of the flow of underground waters, the model is limited along the lines of the current (the impervious borders) at northeast (upwards on river) and south-west (down on river). Those borders are distanced from river on 2,2…2,3 km. As a result, the area of model is 28 km
2. Aroofing of almost watertight marls of the retinue Pb is the bottom border of the model. Theinternal borders are presented by the river Heirabad, the water reservoir and the drainage structures. The calibration of the model was conducted at the reservoir water mark of 580 m and 606…610 m. The correctness criterion of the decision had shown the convergence of the obtained values of discharge level of underground waters with the data of natural observations. In the process of calibration the revision of the input data was carried out - a seepage characteristic of thick limestone mass As and discharge, entering from the right and left bank borders of the model. The forecast calculation was performed for water reservoir level of 620 m. The creation of water reservoir has influenced the seepage regime of the territory by the area of more than 25 km
2. As a result of the buttress of the natural inflow there occurred the redistribution of the natural inflow and change of the direction of the natural inflow that has caused the appearance of springs in downstream of dam near the contact of the series As-Gs. The design inflow of underground waters in the river Heirabad on the area from dam up to the contact of the suites As and Gs in downstream is 2,4…2,6 m
3/s including springs. The share of the direct seepage from water reservoir forms ~40 % of this values, the rest 60 % correspond to the unload natural inflow redistributed as a result of buttress. It is possible to define the level and discharges of underground waters on the territory of hydro unit under any elevation of water reservoir with the help of the created geo seepage model. The model can be used for effectiveness evaluation of the grouting curtain in the operation period.
DOI: 10.22227/1997-0935.2015.3.59-68
References
- Lawrence K.L. ANSYS Tutorial Release 14. SDC Publication, 2012, 176 p.
- Basov K.A. ANSYS: spravochnik pol’zovatelya [ANSYS: User’s Guide]. Moscow, DMK Press, 2011, 640 p. (In Russian)
- Shestakov V.M. Gidrogeodinamika [Hydrogeodinamics]. 3rd edition, revised and enlarged. Moscow, MGU Publ., 1995, 368 p. (In Russian)
- Mironenko V.A. Dinamika podzemnykh vod [Dynamics of Groundwaters]. 5th edition. Moscow, Gornaya kniga Publ., 2009, 519 p. (In Russian)
- Segerlind L.J. Applied Finite Element Analysis. New York, John Wiley and Sons, Ink., 1976, 448 p.
- Orekhov V.V., Khokhotva S.N. Ob’’emnaya matematicheskaya model’ geofil’tratsii skal’nogo massiva, vmeshchayushchego podzemnye sooruzheniya GES Yali vo V’etname [Volume Mathematical Model of Geofiltration of the Rocky Massif Accommodating Underground Structures of Yali HPP in Vietnam]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2004, no. 12, pp. 46—47. (In Russian)
- Aniskin N.A., Antonov A.S., Mgalobelov Yu.B., Deyneko A.V. Issledovanie fil’tratsionnogo rezhima osnovaniy vysokikh plotin na matematicheskikh modelyakh [Studying the Filtration Mode of Large Dams’ Foundations on Mathematical Models]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 10, pp. 114—131. (In Russian)
- Locke M., Indraratna B., Adikari G. Time-Dependent Particle Transport through Granular Filters. Journal of Geotechnical and Geoenvironmental Engineering. 2001, vol. 127, no. 6, pp. 521—528. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2001)127:6(521)
- Lykov A.V. Teoriya teploprovodnosti [The Theory of Heat Conduction]. Moscow, Vysshaya shkola Publ., 1967, 600 p. (In Russian)
- Zienkiewicz O.C., Cheung Y.K. The Finite Element Method in Structural and Continuum Mechanics. London, McGraw-Hill, 1967, 240 p.
- Fadeev A.B. Metod konechnykh elementov v geomekhanike [Finite Element Method in Geomechanics]. Moscow, Nedra Publ., 1987, 221 p. (In Russian)
- Connor J.J., Brebbia C.A. Finite Element Technique for Fluid Flow. London, Newnes-Butterworth, 1977, 260 p.
- Randy H. Shih. SolidWorks 2015 and Engineering Graphics. SDC Publication, 2015, 632 p.
- Bol’shakov V.P., Bochkov A.L., Sergeev A.T. 3D-modelirovanie v AutoCAD, Kompas-3D, SolidWorks, Inventor, T-Flex [3D modeling in AutoCAD, Kompas-3D, SolidWorks, Inventor, N-Flex]. Saint Petersburg, Piter Publ., 2011, 328 p. (In Russian)
- Vladimirov V.B., Zaretskiy Yu.K., Orekhov V.V. Matematicheskaya model’ monitoringa kamenno-zemlyanoy plotiny gidrouzla Khoabin’ [Mathematical Monitoring Model for Rock-Earth Dam of the Hoa Binh HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2003, no. 6, pp. 47—52. (In Russian)
- Mgalobelov Yu.B., Il’in Yu.V. Ispol’zovanie trekhmernoy matematicheskoy modeli pri proektirovanii i obosnovanii nadezhnosti betonnykh sooruzheniy gidrouzla Merove (Sudan) [Using Three-Dimensional Mathematical Model For The Design And Rationale Reliability Of Merove HPP Concrete Structures (Sudan)]. Yubileynyy sbornik nauchnykh trudov Gidroproekta (1930—2000) [Anniversary Collection of Scientific Works of Gidroproekt (1930—2000)]. No. 159. Moscow, Gidroproekt Publ., 2000, pp. 327—339. (In Russian)
- Baranova T.E., Istochnikov V.O. Metodika i opyt postroeniya prostranstvennoy inzhenerno-geologicheskoy modeli skal’nogo massiva (na primere uchastka podzemnykh sooruzheniy GES Yali vo V’etname) [Technique And Experience In Building Space Engineering-Geological Model Of The Rock Mass (on the Example of the Area of Underground Structures of Yali HPP in Vietnam)]. Geotekhnika. Otsenka sostoyaniya osnovaniy i sooruzheniy : trudy Mezhdunarodnoy konferentsii [Proceedings of the International Conference “Geotechnics. Assessment of the State of Bases and Structures”]. Saint Petersburg, 2001, pp. 90—94. (In Russian)
- Orekhov V.V. Ob”emnaya matematicheskaya model’ i rezul’taty raschetnykh issledovaniy napryazhenno-deformirovannogo sostoyaniya osnovnykh sooruzheniy Rogunskoy GES [Volume Mathematical Model and the Results of the Numerical Studies of Stress-Strain State of Rogun HPP Main Structures]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2011, no. 4, pp. 12—19. (In Russian)
- Shestakov V.M., Pozdnyakov S.P. Geogidrologiya [Geohydrology]. Moscow, Akademkniga Publ., 2003, 176 p. (In Russian)
- Darsy N. Les fontaines publicues de la ville de Dijon. Paris, Victor Dalmont, 1856, 647 p.
-
Orekhov Vyacheslav Valentinovich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Doctor of Technical Sciences, chief research worker, Scientific and Technical Center “Examination, Design, Inspection”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Khokhotva Sergey Nikolaevich -
Moscow branch of ENEX
Deputy Head, Centre of Hydraulic Structures Safety, Moscow branch of ENEX, 13 Vol’naya str., Moscow, 105118, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
-
Alekseev German Valer’evich -
Moscow State University of Civil Engineering (National Research University) (MGSU)
Candidate of Technical Sciences, Associate Professor, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation;
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
.
One of the consequences of the construction in the conditions of dense housing system is the development of underground part of buildings, which influences the surrounding buildings, changing the stress-strain state of soil masses and hydrogeological conditions of the construction site. The damming effect leads to local increase of hydrostatical pressure of ground waters on underground structures. The authors present a description of hydrogeological conditions of the construction site of underground construction and mathematical geofiltration model of the soil foundation. The results of numerical investigation of the change in the hydrogeological mode of the construction area in case of enveloping the foundation pit with the wall in the ground are considered. On the first stage the basic mathematical model was calibrated by variation of the values of geofiltration parameters of water-bearing sediments and water-resistant mass and the values of infiltration recharge. The validation criterion of the mathematical model was the good agreement of the modeled and real ground water levels obtained as a result of compilation of the existing geological and hydrogeological materials. The construction simulation was carried out in a multivariant formulation for the conditions of entirely impenetrable wall in the ground with the filtration coefficient 0.001 m/day.
DOI: 10.22227/1997-0935.2016.4.52-61
References
- Il’ichev V.A., Mangushev R.A., Nikiforova N.S. Opyt osvoeniya podzemnogo prostranstva rossiyskikh megapolisov [Experience of Developing Underground Space of Russian Metropolises]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 2012, no. 2, pp. 17—20. (In Russian)
- Nikulin-Osnovskiy M.A. Geofil’tratsionnoe modelirovanie dlya obosnovaniya proektov vysotnogo i podzemnogo stroitel’stva v Moskve [Geofiltration Simulation for Substantiation of the Projects of High-Rise and Underground Construction in Moscow]. Materialy Vserossiyskoy konferentsii po matematicheskomu modelirovaniyu v gidrogeologii : materialy konferentsii (Moskovskaya obl., 23—25 aprelya 2008 g.) [Materials of All-Russian Conference on Mathematical Modelling in Hydrogeology (Moscow Region, April 23—25, 2008]. Moscow, 2008, pp. 72—73. (In Russian)
- Kalitkin N.N. Chislennye metody [Numerical Methods]. 2nd edition, revised. Saint Petersburg, BKhV-Peterburg Publ., 2011, 586 p. (In Russian)
- Markhilevich O.K. Primenenie (opyt primeneniya) razlichnykh programm (razrabotok) modelirovaniya geofil’tratsii dlya resheniya zadach grazhdanskogo i gidrotekhnicheskogo stroitel’stva [Application (Application Experience) of Different Programs (Developments) of Simulating Geofiltration for Solving the Tasks of Civil and Hydrotechnical Construction]. Materialy Vserossiyskoy konferentsii po matematicheskomu modelirovaniyu v gidrogeologii : materialy konferentsii (Moskovskaya obl., 23—25 aprelya 2008 g.) [Materials of All-Russian Conference on Mathematical Modelling in Hydrogeology (Moscow Region, April 23—25, 2008]. Moscow, 2008, pp. 54—55. (In Russian)
- Shestakov V.M. Gidrogeodinamika [Hydrogeodynamics]. 3rd edition, revised and enlarged. Moscow, MGU Publ., 1995, 368 p. (In Russian)
- Guo W., Langevin C.D. 2002. User’s guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 6, Chap. A7, 2002, 77 p. Available at: http://fl.water.usgs.gov/PDF_files/twri_6_A7_guo_langevin.pdf.
- Diersch H.-J.G. FEFLOW Finite Element Subsurface Flow and Transport Simulation System — User’s Manual. Berlin, WASY Ltd, 2004, 168 p.
- Hemker C.J., de Boer R.G. MicroFEM for Windows: Finite-Element Program for Multiple-Aquifer Steady-State and Transient Ground-Water Flow Modeling. 2000. Available at: http://www.microfem.com.
- Zienkiewicz O.C., Cheung Y.K. The Finite Element Method in Structural and Continuous Mechanics. McGraw-Hill, 1967, 240 p.
- Connor J.J., Brebbia C.A. Finite Element Technique for Fluid Flow. Butterworth, 1977, 260 p.
- Kent L. Lawrence. Ansys Tutorial Release 14. SDC Publication. 2012, 176 p.
- Orekhov V.V., Khokhotva S.N. Ob”emnaya matematicheskaya model’ geofil’tratsii skal’nogo massiva, vmeshchayushchego podzemnye sooruzheniya GES Yali vo V’etname [Volume Mathematical Model of the Rocky Massif Geofiltration Accommodating Underground Structures of Yali HPP in Vietnam]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2004, no. 12, pp. 46—47. (In Russian)
- Orekhov V.V., Khokhotva S.N. Gidrogeologicheskaya model’ territorii gidrouzla Kousar [Hydrogeological Model of the Territory of Kowsar Hydraulic Project]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 3, pp. 59—69. (In Russian)
- Aniskin N.A., Antonov A.S., Mgalobelov Yu.B., Deyneko A.V. Issledovanie fil’tratsionnogo rezhima osnovaniy vysokikh plotin na matematicheskikh modelyakh [Studying the Filtration Mode of Large Dams’ Foundations on Mathematical Models]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 10, pp. 114—131. (In Russian)
- Locke M., Indraratna B., Adikari G. Time-Dependent Particle Transport Through Granular Filters. Journal of Geotechnical and Geoenvironmental Engineering. 2001, vol. 127, no. 6, pp. 521—528. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2001)127:6(521).
- Lykov A.V. Teoriya teploprovodnosti [Thermal Conductivity Theory]. Moscow, Vysshaya shkola Publ.,1967, 599 p. (In Russian)
- Randy H. Shih. SolidWorks 2015 and Engineering Graphics. SDC Publication, 2015, 680 p.
- Bol’shakov V., Bochkov A., Sergeev A. 3D modelirovanie v AutoCAD, Kompas-3D, SolidWorks, Inventor, N-Flex [3D Modeling in AutoCAD, Kompas-3D, SolidWorks, Inventor, N-Flex]. Moscow, Piter Publ., 2011, 328 p. (In Russian)