ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

Energy efficiency of housing stock as an economic incentive to increase the performance of real estate objects

Vestnik MGSU 3/2015
  • Grabovyy Kirill Petrovich - Moscow State University of Civil Engineering (MGSU) Doctor of Economical Sciences, Professor, Department of Construction and Property Management, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kiseleva Ekaterina Aleksandrovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Construction Organization and Control in Real Estate, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 781-80-07; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79-91

The most possible increase of market value after large-scale reconstruction can be reached when a building or a group of buildings are situated in rather economically attractive areas, while the most part of the area is already repaired. In these cases the costs of repairs can be compensated by means of increase in the market value and sale of additional floors. The wide use of more effective methods of construction can also increase the price in the repaired real estate objects. The influence on the economic value of houses and buildings can be considerable also due to the improvement of operational qualities and because of an esthetic component. The opportunities for substantial increase of energy efficiency in economic sense are directly connected with the needs for large-scale reconstruction of the outdated building. Nevertheless, the changes of just windows, repair of facades, etc. lead to reasonable improvement of power efficiency, and respectively and building costs in general. The use of natural resources in construction during repairs of the building and at the stage of operation influences the environment. The influence degree depends not only on isolation, but also on the choice of the type of repair, energy efficiency, front and roofing materials, and also on the use of energy raw materials, necessary for construction process.

DOI: 10.22227/1997-0935.2015.3.79-91

References
  1. Chuzhinova Yu.Yu., Semenova E.E. Aktual’nost’ problemy energosberezheniya i puti ee resheniya [Current Problem of Energy Efficiency and Methods of Its Solution]. Nauchnyy vestnik Voronezhskogo GASU. Seriya: Vysokie tekhnologii. Ekologiya [Scientific Herald of the Voronezh State University of Architecture and Construction. Series: High Technologies. Ecology]. 2014, no. 1, pp. 138—141. (In Russian)
  2. Mikhaylov S.A., Balyabina A.A. Regional’nye aspekty problemy energosberezheniya [Regional Aspects of the Problem of Energy Saving]. Sovremennye energeticheskie sistemy i kompleksy i upravlenie imi : materialy VIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Modern Power Systems and Complexes and Management: Materials of the 8h International Science and Practice Conference]. Novocherkassk, YuRGTU (NPI) Publ., 2010, pp. 49—52. (In Russian)
  3. Fuerst F., McAllister P. The Impact of Energy Performance Certificates on the Rental and Capital Values of Commercial Property Assets. Energy Policy. 2011, vol. 39, no. 10, pp. 6608—6614. DOI: http://dx.doi.org/10.1016/j.enpol.2011.08.005.
  4. Qian Q.K., Chan E.H.W., Choy L.H.T. Real Estate Developers’ Concerns about Uncertainty In Building Energy Efficiency (BEE) Investment — A Transaction Costs (TCs) Perspective. Journal of Green Building. 2013, vol. 7, no. 4, pp. 116—129. DOI: http://dx.doi.org/10.3992/jgb.7.4.116.
  5. Kok N., Jennen M. The Impact of Energy Labels and Accessibility on Office Rents. Energy Policy. 2012, vol. 46, pp. 489—497.
  6. Shlychkov V.V. Energeticheskaya bezopasnost’ kak faktor ustoychivogo ekonomicheskogo razvitiya [Energy Security as a Factor of Sustainable Economic Development]. Energetika Tatarstana [Energy of Tatarstan]. 2008, no. 3, pp. 62—69. (In Russian)
  7. Nikolikhina Yu.A. Povyshenie effektivnosti ekspluatatsii ob’’ektov zhiloy nedvizhimosti [Improving the Operational Efficiency of Residential Real Estate Objects]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 9, pp. 650—653. (In Russian)
  8. Fang C.-Y., Hu J.-L., Lou T.-K. Environment-Adjusted Total-Factor Energy Efficiency Of Taiwan’s Service Sectors. Energy Policy. 2013, vol. 63, pp. 1160—1168. DOI: http://dx.doi.org/10.1016/j.enpol.2013.07.124.
  9. Gelman V. Reversible Thyristor-Controlled Rectifiers. IEEE Vehicular Technology Magazine. 2009, vol. 4, no. 3, pp. 82—89.
  10. Kochetkov A.S., Kudrov Yu.V., Sirotenko Ya.A. Razrabotka organizatsionno-administrativnykh i tekhnologicheskikh meropriyatiy po povysheniyu energoeffektivnosti zdaniy i sooruzheniy [Development of Organizational-Administrative And Technological Measures To Improve The Energy Efficiency Of Buildings And Structures]. Servis v Rossii i za rubezhom [Service in Russia and Abroad]. 2014, vol. 8, no. 1 (48), pp. 183—192.
  11. Hurst N. Energy Efficiency Rating Systems for Housing: an Australian Perspective. International Journal of Housing Markets and Analysis. 2012, vol. 5, no. 4, pp. 361—376.
  12. Viguié V., Hallegatte S., Rozenberg J. Downscaling Long Term Socio-Economic Scenarios at City Scale: A Case Study on Paris. Technological Forecasting and Social Change. 2014, pp. 305—324. DOI: http://dx.doi.org/10.1016/j.techfore.2013.12.028.
  13. Beusker E., Stoy C., Pollalis S.N. Estimation Model and Benchmarks for Heating Energy Consumption of Schools and Sport Facilities in Germany. Building and Environment. 2012, vol. 49, no. 1, pp. 324—335. DOI: http://dx.doi.org/10.1016/j.buildenv.2011.08.006.
  14. Jakob M. Marginal Costs and Co-Benefits of Energy Efficiency Investments. The Case of the Swiss Residential Sector. Energy Policy. 2006, vol. 34 (2 Spec. iss.), pp. 172—187.
  15. Bykova S.A. Aspekty energosberezheniya i energoeffektivnost’ pri provedenii kapital’nogo remonta ob”ektov nedvizhimosti na Dal’nem Vostoke [Aspects of Energy Saving and Energy Efficiency When Conducting Capital Repairs of Real Estate Objects in the Far East]. Rossiyskoe predprinimatel’stvo [Russian Journal of Entrepreneurship]. 2011, no. 5—2, pp. 197—202. (In Russian)
  16. Ebzeev M.B. Analiz sovremennoy kontseptsii ekspluatatsii ob”ektov nedvizhimosti [Analysis of the Modern Concept of Real Estate Objects Operation]. Molodoy uchenyy [Young Scientist]. 2011, no. 12, vol. 1, pp. 64—67. (In Russian)
  17. Balyabina A.A. Regional’nye aspekty problemy energosberezheniya [Regional Aspects Of Energy Conservation Problem]. Radio-elektronika, elektrotekhnika i energetika: tezisy dokladov XV Mezhdunarodnoy nauchno-tekhnichesloy konferentsii studentov i aspirantov, g. Moskva, 2009 : v 3-kh tomakh [Radio Electronics, Electrical and Power Engineering: Proceedings of the 15th International Scientific Technological Conference of Students And Postgraduate Students]. Moscow, MEI Publ., 2010, vol. 2, pp. 405—406. (In Russian)
  18. Assefa G., Glaumann M., Malmqvist T., Eriksson O. Quality versus impact: Com-paring the environmental efficiency of building properties using the EcoEffect tool. Building and Environment. 45 (5), 2010, pp. 1095—1103. DOI: http://dx.doi.org/10.1016/j.buildenv.2009.10.001.
  19. Kobeleva S.A. Metodicheskie podkhody proektirovaniya resurso- i energoeffektivnykh zdaniy [Methodological Approaches to the Design of Resource and Energy Efficient Buildings]. Stroitel’stvo i rekonstruktsiya [Construction and Reconstruction]. 2011, no. 5, pp. 18—20. (In Russian)
  20. Marakushin M.V., Tomilov A.L. Informatsionnaya sistema upravleniya zhilishchnym fondom [Information Management System of Housing Stock]. Sistemy upravleniya i informatsionnye tekhnologii [Control Systems and Information Technologies]. 2007, no. 1.1(27), pp. 176—180. (In Russian)
  21. Cox M., Brown M.A., Sun X. Energy Benchmarking of Commercial Buildings: a Low-Cost Pathway Toward Urban Sustainability. Environmental Research Letters. 2013, vol. 8, no. 3, 12 p. Available at: http://iopscience.iop.org/1748-9326/8/3/035018/pdf/1748-9326_8_3_035018.pdf. Date of access: 15.01.2015. DOI: http://dx.doi.org/10.1088/1748-9326/8/3/035018.
  22. Yao J., Zhu N. Enhanced Supervision Strategies for Effective Reduction of Building Energy Consumption — a Case Study of Ningbo. Energy and Buildings. 2011, vol. 43, no. 9, pp. 2197—2202. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.04.027.

Download

Results 1 - 1 of 1