ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

METHOD OF NOISE ANALYSIS INSIDE LONG PREMISES

Vestnik MGSU 1/2013
  • Antonov Aleksandr Ivanovich - Tambov State Technical University (TGTU) Candidate of Technical Sciences, Associate Professor, Department of Architecture and Construction of Buildings, Tambov State Technical University (TGTU), 112 E Michurinskaya street, Tambov, 392032, Russian Federation; +7 (4752) 63-03-82, 63-04-39; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Solomatin Evgeniy Olegovich - Tambov State Technical University (TSTU) + 7 (4752) 63-09-20; + 7 (4752) 63-03-72, Tambov State Technical University (TSTU), Building E, 112 Michurinskaya St., Tambov, 392032, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tseva Anna Viktorovna - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Architectural and Structural Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospekt, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 19-25

Long rooms often make substantial contributions into the noise energy distribution inside buildings. Application of methods of theoretical geometry to the analysis of sound energy distribution patterns in hallway-like premises can cause considerable errors in the implementation of noise protection actions.The method of noise analysis based on statistical principles is proposed in the article. It originates from one-dimensional quasi-diffusive representation of a sound field in long rooms. Interrelation between the stream and the density gradient of reflected sonic energy, as well as consideration of the energy balance in respect of elements of extended room make it possible to design a mathematical model of a stationary noise field in the form of a differential equation that has boundary conditions. The authors have developed a numerical model of a differential equation based on the statistical energy approach using the Zeydel method of simple iterations, and a software programme designated for the analysis of noise fields of long rooms. The Zeydel method demonstrates its high efficiency as it has proven fast convergence of results and takes up a small amount of computer memory because of the tape-like shape of matrix coefficients of the system equations. Comparison of analytical and experimental data has demonstrated high precision of calculations made for rooms that have various acoustic and spacelanning parameters. The method can be used to design sound proofing actions inside premises of civil and industrial buildings.

DOI: 10.22227/1997-0935.2013.1.19-25

References
  1. Ledenev V.I. Statisticheskie energeticheskie metody rascheta shumovykh poley pri proektirovanii proizvodstvennykh zdaniy [Statistical Energy-related Methods of the Noise Field Analysis within the Framework of Design of Industrial Buildings]. Tambov, 2000, 156 p.
  2. Ledenev V.I., Makarov A.M. Raschet energeticheskikh parametrov shumovykh poley v proizvodstvennykh pomeshcheniyakh slozhnoy formy s tekhnologicheskim oborudovaniem [Analysis of Energy Parameters of Noise Fields inside Industrial Premises That Have an Irregular Shape and Accommodate the Process Machinery]. Nauchnyy vestnik VGASU [Scientific Bulletin of Voronesh State University of Architecture and Civil Engineering]. Voronezh, 2008, no. 2 (10), pp. 102—108.
  3. Ledenev V.I., Matveeva I.V., Kryshov S.I. Inzhenernaya otsenka rasprostraneniya shuma v tonnelyakh i koridorakh [Engineering Assessment of Noise Propagation in Tunnels and Corridors]. Izvestiya Yugo-Zapadnogo gos. un-ta [Proceedings of Southwestern State University]. Kursk, 2011, no. 5 (38), chapter 2, pp. 393—396.
  4. Gusev V.P. Snizhenie shuma v gazovozdushnykh traktakh energeticheskikh ob”ektov [Noise Reduction in Gas-air Flow Ducts of Energy Generating Facilities]. Arkhitekturnaya i stroitel’naya akustika. Shumy i vibratsiy: sb. tr. XI ses. Ros. akust. ob-va. [Architectural and Civil Engineering Acoustics. Noises and Vibrations. Collected works of the 11th session of the Russian Acoustic Society]. Moscow, 2001, vol. 4, pp. 31—42.
  5. Gusev V.P., Solodova M.A. K voprosu o rasprostranenii shuma v krupnogabaritnykh gazovozdushnykh kanalakh [On the Issue of Noise Propagation inside Large-size Gas-air Ducts]. ACADEMIA. Arkhitektura i stroitel’stvo. [ACADEMY. Architecture and Construction]. 2010, no. 3, pp. 211—219.
  6. Gusev V.P., Ledenev V.I., Matveeva I.V. Metod otsenki rasprostraneniya shuma v krupnogabaritnykh gazovozdushnykh traktakh energeticheskikh ob”ektov [Method of Noise Propagation Assessment in Large-size Gas-air Ducts of Energy Generating Facilities]. ACADEMIA. Arkhitektura i stroitel’stvo. [ACADEMY. Architecture and Construction]. 2009, no. 5, pp. 104—107.
  7. Osipov G.L., Yudin E.Ya., Khyubner G.; Osipov G.L., Yudin E.Ya., editors. Snizhenie shuma v zdaniyakh i zhilykh rayonakh [Noise Reduction inside Buildings and in Residential Areas]. Moscow, Stroyizdat Publ., 1987, 558 p.
  8. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Reference Book on Mathematics for Scientists and Engineers]. Moscow, Nauka Publ., 1973, 831 p.
  9. Antonov A.I., Makarov A.M. Svidetel’stvo No 2008610070 o registratsii programmy dlya EVM. Raschet urovney shuma statsionarnogo zvukovogo polya i sredney dliny svobodnogo probega v proizvodstvennykh pomeshcheniyakh metodom proslezhivaniya zvukovykh luchey [Certificate no. 2008610070 of Software Programme Registration. Analysis of Noise Levels of a Stationary Sound Field and of the Average Free Path Length in Industrial Premises Using Method of Tracing Sound Beams]. Published on 01.09.2008 in the Russian Federation.
  10. Antonov A.I., Makarov A.M. Svidetel’stvo No 2008610131 o registratsii programmy dlya EVM. Raschet shumovogo polya v proizvodstvennykh pomeshcheniyakh s tekhnologicheskim oborudovaniem kombinirovannym geometricheskim-statisticheskim metodom [Certificate no. 2008610131 of Software Programme Registration. Noise Field Analysis in Industrial Premises That Accommodate Process Machinery Using an Integrated Method of Geometry and Statistics]. Published on 01.09.2008 in the Russian Federation.

Download

Results 1 - 1 of 1