Vestnik MGSU 2/2017 Volume 12
  • Sysoeva Elena Vladimirovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Buildings and Constructions Design, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 131-141

The article presents the four stages of creation and development of the theory of plate and shell which led to the development of a mechanism of calculation of spatial structures of large span buildings and constructions on an advanced level. Each of the stages of the unique buildings calculation method development includes a description of the main achievements in the sphere of structural mechanics, the theory of elasticity and resistance of materials which became the basis for the modern theory of calculation of plates and shells. In the first stage the fundamentals of solid mechanics were developed; this is presented in works of such outstanding scientists as G. Galilei, J.-L. Lagrange, R. Hooke, L. Euler, Kirchhoff, A. Law etc. Development of the theory of plate and shell would be impossible without these works. But absence of such construction material as reinforced concrete did not enable engineers and architects to create a thin roof. Thickness of coverings was intuitively overstated to ensure durability of buildings. The second stage is interesting by formulation of the general theory of calculation of plate and shell and by transition from the working state analysis of structures to the limit state analysis. Beginning of use of reinforced concrete resulted in decrease of a roof thickness to the diameter of its base, compared to buildings made of stone and brick. The third stage is characterized by development of computational systems for calculation of strength, stability and oscillations of core and thin-walled spatial structures based on the finite element method (FEM). During this period a design of buildings and constructions with spans over 200 m with the use of metal was begun. Currently, or during the fourth stage, structures with the use of metal and synthetic materials for spans up to 300 meters are designed. Calculations of long-span buildings and structures are performed using FEM and taking into account different types of nonlinearity. Each stage selected from the history of construction is exemplified by completed projects, hereat characteristics of roofs indicating the applied construction material are given. Transition from natural stone to concrete, metal and synthetic materials in construction of large-span buildings is illustrated in the table. At the end of each stage the scientists’ and designers’ main achievements in the sphere of science, construction and engineering education are shown.

DOI: 10.22227/1997-0935.2017.2.131-141



Vestnik MGSU 1/2013
  • Patrikeev Aleksandr Vladimirovich - Centre for Diagnostics and Monitoring (TsDM) Candidate of Technical Sciences, Director, Monitoring Department, Centre for Diagnostics and Monitoring (TsDM), 95A Varshavskoye shosse, Moscow, 117556, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Salatov Evgeniy Konstantinovich - 22 Pavla Korchagina St., Moscow, 129626, Russian Federation +7 (495) 683-99-93., 22 Pavla Korchagina St., Moscow, 129626, Russian Federation, ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 133-138

The article covers the relevant problem of dynamic monitoring of buildings and structures. Items exposed to dynamic monitoring primarily include high-rise buildings and structures, as well as buildings and structures exposed to crane loads.The authors provide the general procedure of dynamic monitoring and describe its principal stages. The whole succession of actions that constitute the monitoring of the technical condition of buildings and structures can be split into several stages to be stretched over the time period. The authors demonstrate the technical specifications (including dynamic parameters) of a building or a structure in the process of its operation in the form of a graph. The authors propose their methodology of dynamic monitoring that is considered on the basis of a simple example. The authors argue that the more technically sophisticated the item to be monitored, the tougher the requirements designated for its safe operation; therefore, the interval between the stages of monitoring should be shorter. Unique structures may need monitoring using automated stationary systems to be designed within the framework of special-purpose projects.

DOI: 10.22227/1997-0935.2013.1.133-138

  1. Balageas D., Fritzen C.P., Guemes A. Structural Health Monitoring. Publ. ISTE Ltd, London, 2006, 496 p.
  2. Korgin A.V., Shablinskiy G.E., Sergeevtsev E.Yu., Zubkov D.A. Dinamicheskiy monitoring konstruktsiy dekorativnogo navesa i peshekhodnogo mosta v aeroportu Sheremet'evo-3 [Dynamic Monitoring of Structures of a Decorative Shed and a Pedestrian Bridge at Sheremetyevo-3 Airport]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 222—228.
  3. Lazebnik G. E, Kosheleva N.N. Monitoring nesushchikh konstruktsiy zdaniy povyshennoy etazhnosti [Monitoring of Bearing Structures of Excess Height Buildings]. Svit geotekhniki [The World of Geotechnics]. 2009, no. 1, pp. 14—18.
  4. Gur'ev V.V., Dorofeev V.M. O monitoringe tekhnicheskogo sostoyaniya nesushchikh konstruktsiy vysotnykh zdaniy i shirokoproletnykh sooruzheniy [On the Monitoring of the Technical Condition of Bearing Structures of High-rise Buildings and Large-span Structures]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Machinery, Technologies of the 21st Century]. 2006, no. 7(90), pp. 68—69.
  5. GOST R 53778—2010. Zdaniya i sooruzheniya. Pravila obsledovaniya i monitoringa tekhnicheskogo sostoyaniya. Data vvedeniya 2011-01-01. [State Standard of Russia 53778—2010. Buildings and Structures. Rules of Inspection and Monitoring of Their Technical Condition. Date of Introduction 2011-01-01]. Moscow, 2010, 67 p.
  6. Ulybin A.V., Vatin N.I. Printsipial'nye otlichiya GOST R 53778—2010 ot starykh normativov po obsledovaniyu zdaniy i sooruzheniy [Principal Differences between State Standard R 53778-2010 from Former Regulations Applicable to Inspection of Buildings and Structures]. Gidrotekhnika [Hydraulic Engineering]. 2011, no. 2(23), pp. 54—56.
  7. GOST R 54859—2011. Zdaniya i sooruzheniya. Opredelenie parametrov osnovnogo tona sobstvennykh kolebaniy. Data vvedeniya 2012-01-07. [State Standard of Russia Buildings and Structures 54859—2011. Identification of Parameters of the Basic Tone of Natural Oscillations of Buildings. Date of Introduction 2012-01-07]. Moscow, 2012, 64 p.
  8. Patrikeev A.V. Povyshenie urovnya bezopasnosti inzhenernykh sooruzheniy na primere Glavnogo monumenta pamyatnika Pobedy na Poklonnoy gore v g. Moskve [Improvement of Safety of Engineering Structures Exemplifi ed by the Main Monument of the Victory Memorial on Poklonnaya Hill in the city of Moscow]. Problemy upravleniya kachestvom gorodskoy sredy [Problems of the Urban Environment Quality Management]. Collected works of the 11th Scientific Conference. Moscow, RAGS Publ., 2007, p. 82.
  9. Patrikeev A.V., Salatov E.K., Spiridonov V.P. Dinamicheskiy monitoring zdaniy i sooruzheniy kak odin iz kriteriev obespecheniya bezopasnoy ekspluatatsii [Dynamic Monitoring of Buildings and Structures as One of the Criteria of Their Safe Exploitation]. Tekhnologicheskie problemy prochnosti [Technological Problems of Strength]. Collected works of the XVIII International Seminar. Podol'sk, 2011, pp. 78—81.
  10. Korenev B.G., Rabinovich I.M. Spravochnik po dinamike sooruzheniy [Reference Book on Dynamics of Structures]. Moscow, Stroyizdat Publ., 1972, 511 p.


Results 1 - 2 of 2