TECHNOLOGY OF CONSTRUCTION PROCEDURES.MECHANISMS AND EQUIPMENT

DETERMINATION OF PARAMETERS OF THE PROCESS OF REGENERATION OF USED ENGINE OIL USING MEMBRANES ON THE BASISOF THE EXPERIMENTAL AND STATISTICAL MODEL

Vestnik MGSU 2/2013
  • Fedosov Sergey Viktorovich - Ivanovo State University of Architecture and Civil Engineering (IGASU) Doctor of Technical Sciences, Professor, Member, Russian Academy of Architecture and Construction Sciences (RAACS), President, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8ogo Marta St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Maslennikov Valeriy Aleksandrovich - Ivanovo State Polytechnic University (IVGPU) Candidate of Technical Sciences, Associate Professor, chair, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation.
  • Osadchiy Yuriy Pavlovich - Ivanovo State University of Architecture and Civil Engineering (IGASU) Doctor of Technical Sciences, Professor, Member, Russian Academy of Architecture and Construction Sciences (RAACS), President, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8ogo Marta St., Ivanovo, 153037, Russian Federation.
  • Markelov Aleksandr Vladimirovich - Ivanovo State University of Architecture and Civil Engineering (IGASU) Doctor of Technical Sciences, Professor, Member, Russian Academy of Architecture and Construction Sciences (RAACS), President, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8ogo Marta St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 73-79

Application of mathematical methods of optimization of the process of filtration as part of recovery of used engine oils is considered in the article. The method of the full factorial experiment which contemplates generation of the mathematical model of the filtering process is applied with account for numerous factors and missing data. The mathematical model provides the information about the influence of various factors to identify the quantitative values of response functions in the pre-set mode of the process to serve as the basis for optimization.Permeability of polymeric membranes, liquid flow velocity and temperature have been chosen as filtration optimization criteria. As a result of the mathematical processing of the experimental data, factors have been calculated and verified in terms of their importance, and the process description has been provided in the form of a regression equation. Dependences obtained by the authors are recommended for use in the calculation of the process of permeability. For example, they may be used to substantiate the periodicity of maintenance of filtration units.

DOI: 10.22227/1997-0935.2013.2.73-79

References
  1. Garanin E.M. Sposob utilizatsii otrabotannogo motornogo masla i ustanovka dlya ego realizatsii. Pat. 2333933 RF [Method of Recycling of Used Engine Oil and the Recycling Unit. RF Patent 2333933]. Published on October 10, 2006.
  2. Gritsenko V.O., Orlov N.S. Primenenie mikrofil’tratsii dlya regeneratsii otrabotannykh motornykh masel [Use of Microfiltration for Recovery of Used Motor Oils]. Membrany [Membranes]. 2002, no. 16, pp. 10—16.
  3. Kozlov M.P., Dubyaga V.P., Bon A.I. Sposob ochistki masla. Pat. 2255795 RF [Method of Oil Filtering. RF Patent 2255795]. Published on October 7, 2005.
  4. Lutfulina N.A., Lukashevich V.I., Lukashevich A.V. Sposob regeneratsii otrabotannykh masel i ustanovka dlya ego osushchestvleniya. Pat. 2034910 RF [Method of Regeneration of Used Oils and Oil Regeneration Unit. RF Patent 2034910]. Published on May 10, 1995.
  5. Semenov S.A. Planirovanie eksperimenta v khimii i khimicheskoy tekhnologii [Planning of an Experiment in Chemistry and Chemical Technology]. Ìoscow, IPTs MITKhT Publ., 2001, 93 p.
  6. Maslennikov V.A., Osadchiy Yu.P., Markelov A.V. Obosnovanie periodichnosti tekhnicheskikh obsluzhivaniy fil’tratsionnykh ustanovok pri izmenenii propusknoy sposobnosti rabochikh elementov [Substantiation of Periodicity of Maintenance of Filtration Units Caused by Alterations of the Throughput of Operating Elements]. Auezovskie chteniya — 10: «20-letniy rubezh: innovatsionnye napravleniya razvitiya nauki, obrazovaniya i kul’tury» [The Auezov Readings — 10: the 20th Boundary. Innovative Trends in Development of Research, Education and Culture]. Works of the International scientific and practical conference. South Kazakh State University, Shymkent, Kazakhstan, 2011, pp. 70—72.

Download

Modeling of suspension displacement process

Vestnik MGSU 8/2018 Volume 13
  • Galaguz Yuri P. - National Research Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Department of Applied Mathematics, National Research Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Safina Galina L. - National Research Moscow State University of Civil Engineering (MGSU) , National Research Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 944-951

Subject: transport of fluid containing suspended solid particles significantly affects the strength and stability of underground storage facilities, tunnels and hydraulic structures. The process of suspension filtration and displacement of suspension by a flow of fluid is considered in this article. Research background: filtration problems have been intensively studied for the last half-century. During this period, filtration models have become much more advanced. When modeling long-term deep bed filtration, modern researchers have to take into account the numerous factors that influence the transport and deposition of microscopic particles in the porous media. A number of models are being constructed on the basis of balance relationship between suspended and retained particles. Stochastic approaches to filtration problems using the Boltzmann model, network models and random walk equations are also successfully being developed. Research objectives: the study of an advanced one-dimensional model of suspension filtration in a solid porous medium when the suspension is being displaced with pure water. Materials and methods: we consider the process of displacement of suspension with pure water in a porous medium at which the transfer of fine particles and the accumulation of a deposit occur. The mechanical and geometric interaction of particles with a porous medium is the basis of our mathematical model: the solid particles freely pass through the large pores and get stuck in the pores whose size is smaller than the particle diameter. It is assumed that the fluid flow or other particles cannot knock out the retained particles. Deep bed filtration model is described by the equation of mass balance of suspended and retained particles of suspension and the kinetic equation for growth of deposit. When deep bed filtration process is long, the number of free small pores is significantly reduced, which leads to the changes in permeability and porosity of the porous medium. In order to account for this phenomenon, in contrast to the classical filtration equations, the dependence of the coefficients of mass balance equation on deposit concentration is introduced. In this problem at the initial moment a porous medium is filled with a suspension of retained and suspended particles at given concentrations. At filter inlet the pure water starts flowing, which displaces the suspension and gradually fills the porous medium. In the porous medium with pure water the filtering of suspension is terminated, the suspended particles concentration becomes zero, and the retained particles concentration is constant. The numerical calculation is performed by the method of finite differences. Results: for the deep bed filtration problem with variable porosity and permeability, a moving boundary between two phases has been identified, i.e., the front of the moving water flow, and its graph is constructed. Three-dimensional plots of retained and suspended particles concentrations and plots of their two-dimensional cross-section at a fixed time and for a prescribed distance from the filter input are created. The numerical solution is compared with the exact solution for the case of constant coefficients. Conclusions: it is shown that the filtration model with constant functions of porosity and permeability for small values of time can be a linear approximation of more general nonlinear models. Practical significance: planning and development of modern technologies for wastewater and industrial waste treatment, protection of underground structures from groundwater and flood waters, strengthening of porous soil by the concrete grouting method are based on the results of mathematical modeling of filtration problems. The results of the paper allow us to reduce the amount and cost of laboratory research and optimize the cleaning technologies of filter systems.

DOI: 10.22227/1997-0935.2018.8.944-951

Download

Results 1 - 2 of 2