RESEARCH OF BUILDING MATERIALS

DEVELOPMENTOF PLASTER COMPOSITIONS THAT HAVE IMPROVED HEAT RESISTANCE

Vestnik MGSU 2/2013
  • Akulova Mariya Vladimirovna - Ivanovo State University of Architecture and Civil Engineering (IGASU) +7 (4932) 32-66-33, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8th of March St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kollerov Anatoliy Nikolaevich - Ivanovo State University of Architecture and Civil Engineering (IGASU) postgraduate student, Department of Production of Building Materials, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8th of March St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Potemkina Ol’ga Vladimirovna - Ivanovo State University of Architecture and Civil Engineering (IGASU) doctoral student, Department of Production of Building Materials; +7 (4932) 41-03-04, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8th of March St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 88-93

Protection of structures and materials from the adverse effects of the environment is a relevant challenge to be tacked both by the teams of researchers and workers on site. A universal method of protection contemplates the use of cladding and paints. There are classes of finishing materials that have special protective properties.Flame-resistant finishes obstruct the burning of structures, and in some cases they can even prevent inflammation. A universal method of protection is the plastering of the surface of a structure. Plastering is applicable to concrete, masonry, metal as well as timber. Development of heat resistant plaster is relevant due to numerous fires in Russia.This article represents an overview of the research into the influence of composite binders and fillers onto the physical and mechanical properties of the heat resistant plaster.Portland cement M 500 was used as a composite binder. Liquid sodium water glass with the density of 1,300 – 1,500 kg/m3 and the silicate modulus value of 2.4 – 2.8 was also applied. Glass sand with the fineness of 0.315 – 1.25, mineral wool fibers that were4 - 6 mm long (with the density of 50 kg/m3) were applied as fillers.Sugar is known as an excellent inhibitor of Portland cement. Liquid glass binders are very effective if added to heat resistant concretes and mortars. This fact was mentioned in the works of K.D. Nekrasov, A.P. Tarasov, G.P. Gorlov, B.D. Toturbiev and others, and it has been proven in practice. It is noteworthy that liquid glass demonstrates high adhesive strength in terms of all materials. Its adhesive strength is 3...5 times higher than that of the cement, and this fact can serve as the basis for the development of highquality heat-resistant solutions.The resulting composition is an excellent heat resistant plaster; its physical-mechanical and thermal properties are not inferior to heat resistant mortars based on imported additives.

DOI: 10.22227/1997-0935.2013.2.88-93

References
  1. Vasilik I.G., Golubev I.V. Primenenie volokon v sukhikh stroitel’nykh smesyakh [Application of Fibers in Dry Composites]. Stroitel’nye materialy [Construction Materials]. 2002, no. 9, pp. 26—27.
  2. Komar A.G. Stroitel’nye materialy i izdeliya [Construction Materials and Products]. Moscow, Vyssh. shk. publ., 1987, pp. 248—250.
  3. Boldyrev A.S. Stroitel’nye materialy [Construction Materials]. Moscow, Stroyizdat Publ., 1989, pp. 243—244.
  4. Akulova M.V., Kollerov A.N. Poluchenie zharostoykoy shtukaturki povyshennoy prochnosti [Production of High Strength and Heat Resistant Plaster]. Informatsionnaya sreda vuza [Information Environment of an Institution of Higher Education]. Materialy XVIII Mezhdunar. nauch.-tekhn. konf. [Works of the 18th International Scientific and Technical Conference]. Ivanovo, IGASU Publ., 2011, pp. 202—204.
  5. Dolgikh S.G., Karklit A.K., Kakhmerov A.V. Ogneupory na osnove boksitov dlya vakuumatorov [Bauxite-based Refractory Materials for Vacuum Degassers]. Ogneupory [Refractory Materials]. 1993, no. 2, pp. 31—33.
  6. Tarasova A.P. Zharostoykie vyazhushchie na zhidkom stekle i betony na ikh osnove [Heat Resistant Binders That Contain Liquid Glass and Concretes Produced on Their Basis]. Moscow, Stroyizdat Publ., 1982, 133 p.
  7. Gorlov Yu.P., Merkin A.P., Ziyfman M.I., Toturbiev B.D. Zharostoykie betony na osnove kompozitsiy iz prirodnykh i tekhnogennykh stekol [Heat Resistant Concretes Based on Natural and Man-made Compositions of Glass]. Moscow, Stroyizdat Publ., 1986, 145 p.
  8. Toturbiev B.D. Stroitel’nye materialy na osnove silikat-natrievykh kompozitsiy [Construction Materials Based on Sodium Silicate Compositions]. Moscow, Stroyizdat Publ., 1988, 207 p.
  9. Akulova M.V., Vetoshkin A.A., Emelin V.Yu. Razrabotka sostava penobetona povyshennoy termostoykosti [Development of Foam Concrete That Has Improved Heat Resistance]. Informatsionnaya sreda vuza [Information Environment of an Institution of Higher Education]. Materialy XVIII Mezhdunar. nauch.-tekhn. konf. [Works of the 18th International Scientific and Technical Conference]. Ivanovo, IGASU Publ., 2011, pp. 189—192.
  10. Seregin G.V., Anisimova N.K. Optimizatsiya tekhnologicheskikh protsessov s primeneniem metodov matematicheskogo planirovaniya eksperimentov. Ch. 1. Podbor sostava betona. [Optimization of Process Solutions Using Methods of Mathematical Planning of Experiments. Part I. Selection of the Concrete Composition]. Ivanovo, IGASA Publ., 2005, pp. 8—19.
  11. Tikhomirov I.N., Skorina T.V. Vliyanie silikatnogo modulya zhidkogo stekla na svoystva vyazhushchikh materialov [Effect of the Silicate Module of Liquid Glass Produced on Properties of Binders]. Stroitel’nye materialy [Construction Materials]. 2009, no. 12, pp. 23—25.

Download

Physical and mechanical properties of composites based on liquid glass for buildings and structures

Vestnik MGSU 7/2015
  • Markov Sergey Vital’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Housing and Utility Complex, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zavalishin Evgeniy Vasil’evich - Ogarev Mordovia State University Candidate of Technical Sciences, Associate Professor, vice dean, Department of Construction and Architecture, Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk, 430005, Republic of Mordovia, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Yunkevich Aleksey Vladimirovich - Research Design-and-engineering and Technological Institute (JC “VNIIzhelezobeton” ) engineer, Research Design-and-engineering and Technological Institute (JC “VNIIzhelezobeton” ), 62 A 2-ya Vladimirskaya str., Moscow, 111141, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 69-78

Composite materials for building structures have certain advantages. In this field Russian scientists got patents for inventions and useful models of new construction materials and structures. Scientific investigations on determining deformation capacity of concretes and building structures of other materials (wood) and their limit states are continuing with account for force and environment impacts and degradation weakening of construction elements. The article presents the study of physical and mechanical properties of composites based on liquid glass, depending on their quantitative and qualitative composition. The properties of the composites based on liquid glass depend on the type, quality of the composites in the material, their durability, correlation of their strength properties, adhesion of binders and filler, etc. In the studied composites different filler content, hardener, as well as modifying additives were used, that improve the properties of materials.

DOI: 10.22227/1997-0935.2015.7.69-78

References
  1. Erofeev V.T., Travush V.I., Karpenko N.I., Bazhenov Yu.M., Zhidkin V.F., Rodin A.I., Rimshin V.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V., Rodina M.A. Patent 2491239 RF, MPK C04B 7/52. Biotsidnyy portlandtsement. Zayavka № 2012107175/03 ; zayavl. 27.02.2012; opubl. 27.08.2013. Byul. № 24 [Russian Patent 2491239 RF, MPK C04B 7/52. Biocide Portland Cement. Notice no. 2012107175/03 ; appl. 27.02.2012; publ. 27.08.2013. Bulletin no. 24]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. 4 p. (In Russian)
  2. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Travush V.I., Karpenko N.I., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F., Rodin A.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V. Patent 2491240 RF, MPK C04B 7/52. Biotsidnyy portlandtsement. Zayavka № 2012107722/03; zayavl. 29.02.2012; opubl. 27.08.2013. Byul. № 24 [Russian Patent 2491240 RF, MPK C04B 7/52. Biocide Portland Cement. Notice no. 2012107722/03; appl. 29.02.2012; publ. 27.08.2013. Bulletin no. 24]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. 4 p. (In Russian)
  3. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F.,Rodin A.I., Bogatov A.D., Kaznacheev S.V., Rodina M.A. Patent 2496729 RF, MPK C04B. Portlandtsement. Zayavka № 2012107720 ; zayavl. 29.02.2012 ; opubl. 27.10.2013 [Russian Patent 2496729 RF, MPK C04B. Portland Cement. Notice no. 2012107720 ; appl. 29.02.2012 ;publ. 27.10.2013]. Bank patentov [Bank of Patents]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. Available at: http://bankpatentov.ru/node/426361. Date of access: 15.05.2015. (In Russian)
  4. Erofeev V.T., Bazhenov Yu.M., Magdeev U.Kh., Zhidkin V.F., Rodin A.I., Rimshin V.I.,Bogatov A.D., Burnaykin N.F., Kaznacheev S.V., Rodina M.A. Patent 2496728 RF, MPK C04B. Portlandtsement. Zayavka № 2012107174 ; zayavl. 27.02.2012 ; opubl. 27.10.2013 [Russian Patent no. 2496728 RF, MPK C04B. Portland Cement. Notice no. 2012107174 ; appl. 27.02.2012 ; publ. 27.10.2013]. Bank patentov [Bank of Patents]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. Available at: http://bankpatentov.ru/node/426360. Date of access: 15.05.2015. (In Russian)
  5. Anpilov S.M., Gaynulin M.M., Eryshev V.A., Murashkin V.G., Murashkin G.V., Anpilov M.S., Rimshin V.I., Sorochaykin A.N. Patent RF na poleznuyu model’ 147740. Nes”emnaya stenovaya opalubka. Opubl. 08.07.2014 [Russian Useful Model Patent 147740. Permanent Wall Form. Publ. 08.07.2014]. Poleznaya model’.ru [Useful Model.ru]. Available at: http://poleznayamodel.ru/model/14/147740.html/. Date of access: 15.05.2015. (In Russian)
  6. Anpilov S.M., Eryshev V.A., Gaynulin M.M., Murashkin V.G., Murashkin G.V., Anpilov M.S., Rimshin V.I., Sorochaykin A.N. Patent RF na poleznuyu model’ 147452. Sbornyy stroitel’nyy element : referat. Opubl. 08.07.2014 [Russian Useful Model Patent 147452. Ready-made Building Element : Report. Publ. 08.07.2014]. Poleznaya model’.ru [Useful Model.ru]. Available at: http://poleznayamodel.ru/model/14/147452.html/. Date of access: 15.05.2015. (In Russian)
  7. Bondarenko V.M., Rimshin V.I. Kvazilineynye uravneniya silovogo soprotivleniya i diagramma σ−ε betona [Quasilinear Equations of Force Resistance and Diagram of σ−ε Concrete]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Constructions]. 2014, no. 6, pp. 40—44. (In Russian)
  8. Bondarenko V.M., Kurzanov A.M., Rimshin V.I. Mekhanizm seysmicheskikh razrusheniy zdaniy [Mechanism of Seismic Destruction of Buildings]. Vestnik Rossiyskoy akademii nauk [Bulletin of the Russian Academy of Sciences]. 2000, vol. 70, no. 11, pp. 1005—1009. (In Russian)
  9. Bondarenko V.M., Rimshin V.I. Ostatochnyy resurs silovogo soprotivleniya povrezhdennogo zhelezobetona [Residual Life of Force Resistance of Damaged Reinforced Concrete]. Vestnik otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences]. 2005, no. 9, pp. 119—126. (In Russian)
  10. Krishan A.L., Astaf’eva M.A., Narkevich M.Yu., Rimshin V.I. Opredelenie deformatsionnykh kharakteristik betona [Definition of the Deformation Properties of Concrete]. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences]. 2014, no. 9—10 (77), pp. 367—369. (In Russian)
  11. Krishan A.L., Astaf’eva M.A., Rimshin V.I. Predel’nye otnositel’nye deformatsii tsentral’no-szhatykh zhelezobetonnykh elementov [Limit Relative Deformations of Axially Loaded Reinforced Concrete Elements]. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences]. 2014, no. 9—10 (77), pp. 370—372. (In Russian)
  12. Kurbatov V.L., Rimshin V.I. Prakticheskoe posobie inzhenera-stroitelya [Practical Guide of Civil Enineer]. Moscow, Student Publ., 2012, 743 p. (In Russian)
  13. Larionov E.A., Rimshin V.I., Vasil’kova N.T. Energeticheskiy metod otsenki ustoychivosti szhatykh zhelezobetonnykh elementov [Energy Method of Estimating the Resistance of Compressed Reinforced Concrete Elements]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2012, no. 2, pp. a77—81. (In Russian)
  14. Roshchina S.I., Rimshin V.I. Raschet deformatsiy izgibaemykh armirovannykh derevyannykh elementov s uchetom polzuchesti [Deformation Calculation of Bendable Reinforced Wooden Elements woth Account for Creep]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [News of Southwest State University]. 2011, no. 1 (34), pp. 121—124. (In Russian)
  15. Rimshin V.I., Bikbov R.Kh., Kustikova Yu.O. Nekotorye elementy usileniya stroitel’nykh konstruktsiy kompozitnymi materialami [Some Elements of Building Structures Reinforcement with Composite Materials]. Vestnik BelGTU [Bulletin of BSTU named after V.G. Shukhov]. 2005, no. 10, pp. 381—383. (In Russian)
  16. Rimshin V.I., Kustikova Yu.O. Fenomenologicheskie issledovaniya velichiny stsepleniya bazal’toplastikovoy armatury s betonom [Phenomenological Analysis of Linkage Value of Basalt-Plastic Reinforcement with Concrete]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii [News of Southwest State University. Series: Equipment and Technologies]. 2011, no. 1, pp. 27—31. (In Russian)
  17. Rimshin V.I., Kustikova Yu.O. Mekhanika deformirovaniya i razrusheniya usilennykh zhelezobetonnykh konstruktsiy [Mechanics of Deformation and Destruction of Reinforced Concrete Structures]. Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel’stvo i transport [News of Orlov State Technical University. Series: Construction and Transport]. 2007, no. 3/15 (537), pp. 53—56. (In Russian)
  18. VSN 53-86(r). Pravilo otsenki fizicheskogo iznosa zhilykh zdaniy [Construction Norms VSN 53-86(r). Rules of Estimating the Physical Wear of Residential Buildings]. Moscow, Gosgrazhdanstroy Publ., 1988, 50 p. (In Russian)
  19. Rimshin V.I., Shubin L.I., Savko A.V. Resurs silovogo soprotivleniya zhelezobetonnykh konstruktsiy inzhenernykh sooruzheniy [Life of Force Resistance of Reinforced Concrete Structures of Engineering Constructions]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 483—491. (In Russian)
  20. Rimshin V.I., Galubka A.I., Sinyutin A.V. Inzhenernyy metod rascheta usileniya zhelezobetonnykh plit pokrytiya kompozitnoy armaturoy [Engineering Calculation Method of Concrete Slab Reinforcement by Composite Reinforcement]. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Volga region Bulletin]. 2014, no. 3, pp. 218—220. (In Russian)
  21. Telichenko V.I., Rimshin V.I. Kriticheskie tekhnologii v stroitel’stve [Critical Technologies in Construction]. Vestnik Otdeleniya stroitel’nykh nauk RAASN [Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences]. 1998, no. 4, pp. 16—18. (In Russian)
  22. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V., Bogatov A.D., Astashov A.M., Korotaev S.A., Nikitin L.V. Silikatnye i polimersilikatnye kompozity karkasnoy struktury rolikovogo formovaniya [Silicate and Polymer-silicate Composites of the Frame Structure of Roller Forming]. Moscow, ASV Publ., 2009, 160 p. (In Russian)
  23. Zavalishin E.V. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla : avtoreferat dissrtatsii … kandidata tekhnicheskikh nauk [Biological Resistance of the Composites Based on Liquid Glass : Author’s Thesis of Candidate of Technical Sciences]. Penza, 2002, 18 p. (In Russian)
  24. Zavalishin E.V., Erofeev V.T., Smirnov V.F. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla [Biological Resistance of the Composites Based on Liquid Glass ].Biopovrezhdeniya i biokorroziya v stroitel’stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodeteriorations and Biocorrosion in Construction : Materials of the 2nd International Science and Technical Conference]. Saransk, 2004, pp. 156—159. (In Russian)
  25. Perlin S.M., Makarov V.G. Khimicheskoe soprotivlenie stekloplastikov [Chemical Resistance of Fiberglass]. Moscow, Khimiya Publ., 1983, 184 p. (In Russian)
  26. Khrulev V.M. Polimersilikatnye kompozitsii v stroitel’stve [Polymer-silicate Compositions in Constrution]. Ufa, TAU Publ., 2002, 76 p. (In Russian)
  27. Rimshin V.I., Larionov E.A., Erofeyev V.T., Kurbatov V.L. Vibrocreep of Concrete with a Nonuniform Stress State. Life Science Journal. 2014, vol. 11, no. 11, pp. 278—280.
  28. Awaya H., Kajiyama H., Oda N. Suppression of the Corrosive Properties of Calcium Chloride. Japan. 78, 13179. May 08.78; Chem Abstr., 89, 116866.
  29. Christophliemk P. Herstellung, Struktur und Chemietechnisch wichtiger Alkalisilicate. Glastechnische Berichte. 1985, vol. 58, no. 11, pp. 308–—314.
  30. Csutor J. Gravitacios betonsöverk guartasa hendelessel. Epitöanyag. 1973, no. 11, pp. 423—431.
  31. Friedemann W. Anwendungsvielfalt des Rohstoffes Wasserglas. Glastechnische Berichte. 1985, vol. 58, no. 11, pp. 315—319.
  32. Vail J.G. Soluble Silicates (ACS Monograph Series). Reinhold, New York, 1952, vol. 1, pp. 158; Vol. 2, p. 549.
  33. Weldes H.H., Lange K.R. Properties of Soluble Silicates. Ind. Eng. Chem. 1969, vol. 61, no. 4, pp. 29—44. DOI: http://dx.doi.org/10.1021/ie50712a008.
  34. Williamson G., Glasser F.P. The Crystallization of Na2O∙2SiO2. Phys. Chem. Glasses. 1966, vol. 7, no. 4, pp. 127—128.

Download

PECULIARITIES OF STRUCTURIZATION AND RHEOLOGICAL PROPERTIES OF LIQUID GLASS COMPOSITES CURED BY BARIUM CHLORIDE

Vestnik MGSU 11/2012
  • Grishina Аnna Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Junior Researcher, Research and Educational Center for Nanotechnologies, +7(499)188-04-00, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korolev Evgeniy Valerevich - Moscow State University of Civil Engineering (MSUCE) 8 (499) 188 04 00, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoeshosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 144 - 151

Results of examination of the structure formation process undergoing in the system composed
of sodium hydrosilicates and barium chloride are presented in the paper. It is proven that the process
of initial structure formation comprises two stages. During the first stage, the primary frame
structure of barium hydrosilicates is formed. It is followed by the process of restructuring accompanied
by the dissolution of the silica acid and formation of barium hydrosilicates. Later, hydrosilicates
consolidate and reinforce the material.
Results of optical examinations are confirmed by the study of the rheological characteristics
of the mixture. Methodology of identification of the moment of initiation and completion of the hardening
process together with duration of primary and secondary frame formation is developed on
the basis of theoretical rheological curves. Time intervals of initial structurization are revealed for
the system comprising sodium hydrosilicates and a modified curing agent in the event of different
amounts of admixtures. Time intervals and average rates of structurization are also identified for
each stage of the process.

DOI: 10.22227/1997-0935.2012.11.144 - 151

References
  1. Grishina A.N., Korolev E.V. Strukturoobrazovanie i svoystva kompozitsii «zhidkoe steklo — khlorid bariya» dlya izgotovleniya radiatsionno-zashchitnykh stroitel’nykh materialov [Structurization and Properties of the Composition of Liquid Glass and Barium Chloride Used in Production of Radiation Protection Materials]. Nauchnyy vestnik Voronezhskogo GASU «Stroitel’stvo i arkhitektura» [Scientific Bulletin of Voronezh University of Architecture and Civil Engineering “Construction and Architecture”]. 2009, no. 4(16), pp. 70—77.
  2. Korolev E.V., Grishina A.N. Strukturoobrazovanie radiatsionno-zashchitnykh zhidkostekol’nykh stroitel’nykh materialov, otverzhdennykh khloridom bariya [Structurization of Radiation Protection Construction Materials Based on Liquid Glass and Cured by Barium Chloride]. XV Akademicheskie chteniya RAASN «Dostizheniya i problemy materialovedeniya i modernizatsii stroitel’noy industrii» [XVth Academic Meetings of RAACS. Achievements and Problems of Material Science and Modernization of the Construction Industry]. Kazan, KGASU Publ., 2010, pp. 114—118.
  3. Korolev E.V., Grishina A.N. Vybor otverditelya dlya radiatsionno-zashchitnykh kompozitsionnykh materialov na osnove zhidkogo stekla [Selection of the Curing Agent for Radiation Protection Composites Based on Liquid Glass]. Materialy II Vserossiyskoy konferentsii studentov, aspirantov i molodykh uchenykh: Teoriya i praktika povysheniya effektivnosti stroitel’nykh materialov. [Proc. of the IId All-Russian conference of graduates, postgraduates and young scientists. Theory and Practice of Improvement of Efficiency of Building Materials]. Penza, PGUAS Publ., 2007, pp. 202—204.
  4. Grishina A.N., Korolev E.V., Khlystunov M.S. Usadochnye deformatsii radiatsionno-zashchitnykh stroitel’nykh materialov na osnove zhidkogo stekla [Contraction of Radiation Protection Construction Materials Based on Liquid Glass]. Stroitel’nye materialy [Construction Materials]. 2010, no. 6, pp. 59—61.
  5. Subbotkin M.I., Kuritsyna Yu.S. Kislotoupornye betony i rastvory na osnove zhidkogo stekla [Acid Resistant Concretes and Mortars Based on Liquid Glass]. Moscow, Izd-vo literatury po stroitel’stvu publ., 1967, 133 p.
  6. Korneev V.I., Danilov V.V. Proizvodstvo i primenenie rastvorimogo stekla. Zhidkoe steklo. [Production and Application of Liquid Glass. Liquid Glass]. Leningrad, Stroyizdat Publ., 1991, 176 p.
  7. Grigor’ev P.N., Matveev M.A. Rastvorimoe steklo [Soluble Glass]. Moscow, Stroyizdat Publ., 1989, 443 p.
  8. Korolev E.V., Grishina A.N. Parametry sostoyaniya radiatsionno-zashchitnykh zhidkostekol’nykh stroitel’nykh materialov, otverzhdennykh khloridom bariya [State Parameters of Radiation Protection Construction Materials Based on Liquid Glass and Cured by Barium Chloride]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [News of Kazan State University of Architecture and Civil Engineering]. 2011, no. 1(15), pp. 172—176.
  9. Naymark E. Otkryt mekhanizm samoorganizatsii nanokristallov karbonatov i silikatov v biomorfnye struktury [Method of Self-organization of Nano-crystals of Carbonates and Silicates into Biomorphic Structures Is Discovered]. Available at: http://elementy.ru/news/430973. Date of access: 23.07.2010.
  10. Goronovskiy I.T., Nazarenko Yu.P., Nekryach E.F. Kratkiy spravochnik po khimii [Brief Reference Book on Chemistry]. Kiev, Naukova dumka publ., 1987, 832 p.
  11. Rabinovich V.A., Khavin Z.Ya. Kratkiy khimicheskiy spravochnik [Brief Chemistry Reference Book]. Leningrad, Khimiya Publ., 1978, 392 p.
  12. Akhmetov N.S. Neorganicheskaya khimiya [Inorganic Chemistry]. Moscow, Vyssh. shk. publ., 1969, 638 p.
  13. Shabanova N.A., Sarkisov P.D. Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema [Fundamentals of the Sol-gel Technology of Nano-dispersed Silica]. Moscow, Akademkniga Publ., 2004, 208 p.

Download

PROPERTIES OF CEMENT COMPOSITES BY THE MECHANOACTIVATION OF SOLUTION OF THE SODIUM SILICATE

Vestnik MGSU 1/2012
  • Fedosov Sergey Viktorovich - Ivanovo State Architecturally-building University Acad. of RAASN, Doctor tech. Sciences, Professor, rector of +7-(4932)-32-85-40, Ivanovo State Architecturally-building University, 20, 8-th March, Ivanovo, Russia, 153037; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Akulova Marina Vladimirovna - Ivanovo State University of Architecture and Civil Engineering (IGASU) Doctor of Technical Sciences, Counselor of RAACS, Professor, Chair, Department of Production of Construction Materials, Ivanovo State University of Architecture and Civil Engineering (IGASU), 20 8ogo Marta St., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Slizneva Tatjana Evgenjevna - Ivanovo State Architecturally-building University candidate tech. Sciences, Associate Professor of Higher and Applied mathematic department +7-(4932)-38-40-20, Ivanovo State Architecturally-building University, 20, 8-th March, Ivanovo, 153037, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Akhmadulina Juliya Sergeevna - Ivanovo State Architecturally-building University Assistant of Higher and Applied mathematic Department +7-(4932)-38-40-20, Ivanovo State Architecturally-building University, 20, 8-th March, Ivanovo, 153037, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Padokhin Valery Alekseevich - Institute of solution chemistry RAS Doctor tech. Sciences, Professor, Senior staff scientist, Head of the laboratory Chemistry and Technology of Non-linear Processes +7-(4932)-33-62-64, Institute of solution chemistry RAS, 1, Akademicheskaja, Ivanovo, 153045, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bazanov Aleksandr Vladimirovich - Institute of solution chemistry RAS candidate tech. Sciences, Scientific associate of the laboratory Chemistry and Technology of Non-linear Processes +7-(4932)-30-78-97, Institute of solution chemistry RAS, 1, Akademicheskaja, Ivanovo, 153045, Russia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 57 - 62

Mixing of cement by the mechanoactivation of the sodium liquid glass solution resulted in increasing of the heat stability and the compressive and flexural strengths of cement stone and reducing of the water adsorption. These data point to compacting of cement stone structure.

DOI: 10.22227/1997-0935.2012.1.57 - 62

References
  1. Gorlov J.P., Merkin A.P., Zeiphman M.I., Toturbiev B.D. Zharostojkie betony na osnove kompozicij iz prirodnyh i tehnogennyh stekol [Heat-resistant concrete on basis of formulation of the natural and anthropogenic glasses]. Moscow, Metallurgia, 1974, 151 p.
  2. Ivobotenko B.A., Iljinskiy N.F., Kopylov I.P. Planirovanie jeksperimenta v jelektromehanike [The planning an experiment in the electromechanics], Moscow, Energy, 1975, 184 p.
  3. Venetsianov E.V., Rubinshtein R.N. Dinamika sorbcii iz zhidkih sred [The dynamics of sorption from liquid medium]. Moscow, Nauka, 1983, 237 p.
  4. Frolov J.G. Kurs kolloidnoj himii. Poverhnostnye javlenija i dispersnye sistemy [Course of colloidal chemistry. The surface effects and disperse systems]. Moscow, Alians, 2004, 464 p.

Download

Regularities of formation of adhesive contact “sol-silicate paint - substrate”

Vestnik MGSU 1/2019 Volume 14
  • Loganina Valentina I. - Penza State University of Architecture and Construction Doctor of Technical Sciences, Professor, Head of Department of Quality Management and Technology of Construction Production, Penza State University of Architecture and Construction, 28 Germana Titova st., Penza, 440028, Russian Federation.
  • Mazhitov Erkebulan B. - Penza State University of Architecture and Construction postgraduate student of the Department of Quality Management and Technology of Construction Production, Penza State University of Architecture and Construction, 28 Germana Titova st., Penza, 440028, Russian Federation.

Pages 94-101

Introduction. The use as a binder in the manufacture of silicate paints polysilicate solutions obtained by mixing liquid glass and silica sol is considered. To regulate the rheological properties of the paint, improve the filling and prevent the pigment part from sagging, it has been proposed to introduce glycerin into the binder composition. The results of studying the interfacial interaction between the paint and the substrate are given. Materials and methods. In developing the formulation of silicate paints based on polysilicate solutions, MK-2 microcalcite, marshalite, diatomite and talc of MT-GSM grade were used as a filler, and titanium dioxide as a pigment. Polysilicate solutions were obtained by reacting stabilized solutions of colloidal silica (sols) with aqueous solutions of alkali silicates (liquid glasses). Nanosil 20 and Nanosil 30 silicic acid sol were used, produced by the Promsteklocentr PC. Used potassium liquid glass with module M = 3.29. A thermodynamic method was used to assess the interfacial interaction. Results. Shown that the introduction of glycerol into the formulation of a sol of silicate paint promotes a decrease in the interfacial surface tension and a better wetting of the surface of the mortar substrate. An increase in wetting coefficient is observed. Coatings based on sol silicate paints with the addition of glycerin are characterized by increased crack resistance. An increase in tensile strength, maximum tensile properties, and decrease in the elastic modulus of paint membranes based on the composition with glycerol has been established. The values of the free surface energy of the coating based on the sol of silicate paint and the ratio of the polar to the dispersion component of the free energy of the surface are given. Coatings based on sol of silicate paint with the addition of glycerin are characterized by a large value of the free energy of the surface. In the process of moistening a decrease in the free surface energy is observed due to a decrease in the dispersion component. Conclusions. Studies have shown that the introduction of an additive of glycerin in the formulation of a silicate paint sol contributes to an increase in the performance properties of coatings based on it.

DOI: 10.22227/1997-0935.2019.1.94-101

Download

Results 1 - 5 of 5