DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Research into interrelations between plasticity and hardness of standardstrength steel grades

Vestnik MGSU 3/2013
  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Profes- sor, Department of Machinery, Machine Elements and Process Metallurgy; +7 (499) 183-94-95, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Rus- sian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Voronina Irina Vladimirovna - Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Department of Building and Hoisting Machinery, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 182-16-87; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Allattouf Hassan Latuf - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Rus- sian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 46-52

The objective of the study is research into interrelation between values of plasticity(d, y) and hardness (HB).Numerical values of hardness are insufficient to make accurate assessments of plasticity values. Meanwhile, hardness is the property identified using small-sized samples extracted from the metalwork of restored and reconstructed buildings. The most suitable method is the Rockwell one used to obtain HRB or HRC hardness values. However, these values maintain an analytical relationship neither with durability, nor with plasticity values. The difference between metal testing methods consists in their relation to dimensions: HRB and HRC values are dimensionless, while HB values are size dependent (kgf/mm2, or MPa). Therefore, the approach employed in this article can be used to generate supplementary information about the properties of metals using HRB or HRC hardness measurements.It is noteworthy that the proposed technique of coordination of HRB hardness val-ues with HB hardness values may be employed to, first, analyze σ and σ sizes using HBт вvalues, and second, to identify the nature of relationship between HRB, on the one hand,and d and y values, on the other hand, to compose the equation of relative strength and plasticity values and to assess the most important factor of reliability of metals.

DOI: 10.22227/1997-0935.2013.3.46-52

References
  1. Tylkin M.A. Spravochnik termista remontnoy sluzhby [Reference Book for a Heat Treater of the Repair Service]. Moscow, Metallurgiya Publ., 1981, 647 p.
  2. Mozberg R.K. Materialovedenie [Material Engineering]. Valgus Publ., Tallinn, 1976, p. 554.
  3. Gulyaev A.P. Metallovedenie [Metal Engineering]. Moscow, Metallurgiya Publ., 1986, 541 p.
  4. Arzamasov B.N., Makarova V.I., Mukhin G.G. Materialovedenie [Material Engineering]. Moscow, MGTU im. N.E. Baumana publ., 2008, 648 p.
  5. GOST 8479—70. Kategorii prochnosti, normy mekhanicheskikh svoystv, opredelennye pri ispytanii na prodol’nykh obraztsakh, i normy tverdosti [All-Russian State Standard 8479—70. Strength Categories, Standards of Mechanical Properties Identified in the Course of Testing of Longitudinal Samples, and Standards of Hardness].
  6. Gustov Yu.I., Gustov D.Yu., Bol’shakov V.I. Prochnostno-plasticheskaya indeksatsiya metallicheskikh materialov [Strength and Plasticity Indexing of Metal Materials]. Metallurgiya i gornorudnaya promyshlennost’ [Metallurgy and Mining Industry]. 1996, no. 3-4, pp. 31—33.
  7. Gustov Yu.I., Gustov D.Yu. Issledovanie vzaimosvyazi mekhanicheskikh svoystv metallicheskikh materialov. Teoreticheskie osnovy stroitel’stva. Doklady VII Pol’sko-rossiyskogo seminara [Research into Interrelations between Mechanical Properties of Metal Materials. Theoretical Fundamentals of Civil Engineering. Collected works of the 7th Russian-Slovak-Polish Seminar]. Moscow, ASV Publ., 1998, pp. 225—228.
  8. Gustov Yu.I., Gustov D.Yu., Voronina I.V. Opredelenie tverdosti staley po khimicheskomu sostavu i uglerodnomu ekvivalentu. Teoreticheskie osnovy stroitel’stva. Doklady XVII Pol’sko-rossiysko-slovatskogo seminara [Analysis of Steel Hardness on the Basis of the Chemical Composition and Carbon Equivalent. Theoretical Fundamentals of Civil Engineering. Collected works of the 7th Polish-Russian-Slovak Seminar]. Part 2. Zilina, 2008, pp. 237—244.
  9. Gustov Yu.I., Gustov D.Yu., Voronina I.V. Sinergeticheskie kriterii metallicheskikh materialov. Teoreticheskie osnovy stroitel’stva. Doklady XV Rossiysko-slovatsko-pol’skogo seminara [Synergetic Criteria of Metal Materials. Theoretical Fundamentals of Civil Engineering. Collected works of the 15th Russian-Slovak-Polish Seminar]. Warsaw, 2006, pp. 179—184.
  10. Skudnov V.A. Primenenie kompleksov razrusheniya sinergetiki dlya otsenki sostoyaniya i povedeniya (rabotosposobnosti) metallov. Fraktaly i prikladnaya sinergetika «FiPS-2005». Trudy IV mezhdunar. mezhdistsiplinarnogo simpoziuma. [Application of Synergy Destruction Sets in Assessment of Condition and Behaviour (Serviceability) of Metals. Fractals and Applied Synergy «FiPS-2005». Works of the 4th International Inter-disciplinary Symposium]. Moscow, Interkontakt Nauka Publ., 2005, pp. 221—226.
  11. Sorokin V.G., Volosnikova A.V., Vyatkin S.A. Marochnik staley i splavov [Reference Book of Steel and Alloy Grades]. Moscow, Mashinostroenie Publ., 1989, 640 p.

Download

Results 1 - 1 of 1