DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Analysis of available space structure joints and designof demountable modular joints

Vestnik MGSU 3/2013
  • Inzhutov Ivan Semenovich - Siberian Federal University (SibFU) Doctor of Technical Sciences, Professor, Department of Building Structures and Control Systems, Director, Civil Engineering Institute, Siberian Federal University (SibFU), 79 pr. Svobodnyy, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dmitriev Petr Andreevich - Institute of Civil Engineering, Siberian Federal University (SFU) Doctor of Technical Sciences, Professor, Department of Structural Units and Controlled Systems; +7 (391) 252-78-11, Institute of Civil Engineering, Siberian Federal University (SFU), .
  • Deordiev Sergey Vladimirovich - Institute of Civil Engineering, Siberian Federal University (SFU) +7 (391) 252-78-64, Institute of Civil Engineering, Siberian Federal University (SFU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zakharyuta Vasiliy Viktorovich - Institute of Civil Engineering, Siberian Federal University (SFU) postgraduate student, Department of Structural Units and Controlled Systems, Institute of Civil Engineering, Siberian Federal University (SFU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 61-71

The article is an overview of various designs developed for joints of rod elements of space structures. Designs under consideration include those developed by domestic and foreign researchers and structural engineers. Space joints are clustered on the basis of their characteristic features, and their principal strengths and weaknesses are specified by the authors.The authors’ overview serves as the basis for an advanced structural solution developed for modular joints of space elements. A space joint consists of four space details having holes that are fastened to the central element by two bolts (screws). A flat plate with holes is attached to the edge of the central element. Space details and the core element are to have a gap between them. Rod ends are inserted into gaps and fastened to joints with bolts. The proposed solution may be used to reduce the material consumption rate (steel and plastic) and to simplify the assembly of structures. The solution proposed by the authors also improves the reliability of joints due to the integrity of elements, their rigid fastening to the central element, and the use of two cross-section bolts.

DOI: 10.22227/1997-0935.2013.3.61-71

References
  1. Makowski Z.S. Development of Jointing Systems for Modular Prefabricated Steel Space Structures. Proceedings of the international symposium. Warsaw, Poland, 2002, pp. 17—41.
  2. Chilton J. Space Grid Structures. Produced by Plant a Tree. Great Britain, 2000.
  3. Trofimov V.I., Kaminskiy A.M. Legkie metallicheskie konstruktsii zdaniy i sooruzheniy [Lightweight Metal Constructions of Buildings and Structures]. Moscow, ASV Publ., 2002, pp. 130—132.
  4. Khvatkin Yu.S. Avtorskoe svidetel’stvo 2087634 RU. Uzel soedineniya sterzhney prostranstvennogo karkasa [Authorship Certificate 2087634 RU. Joint for Rods of a Space Frame].
  5. Kudishin V.I., Trofimov V.I. Avtorskoe svidetel’stvo 497390 SU. Uzlovoe soedinenie prostranstvennoy sterzhnevoy konstruktsii [Joint for a Space Rod Structure].
  6. Ramaswamy G.S., Eekhout M., Suresh G.R. Steel Space Frames, Analysis, Design and Construction. London, Thomas Telford Publishing, 2002.
  7. Shteger J.E.O. Avtorskoe svidetel’stvo 1794151 SSSR. Uzel soedineniya sterzhney prostranstvennogo karkasa [Authorship Certificate 1794151 USSR. Joint for Rods of a Space Frame].
  8. Vestrut Space Grid Systems. Available at: http://www.vestrut.it. Date of access: October 11, 2012.
  9. TU 5285-001-47543297—09. Sterzhni i uzlovye elementy sistemy MARKhI [Technical Specifications 5285-001-47543297—09. Rods and Joint of the MARKHI System]. Moscow, 2009.
  10. Zherbin M.M., Tereshchenko A.P., Nilov A.A., Yatsoshek I. Avtorskoe svidetel’stvo 690135 SU. Uzlovoe soedinenie trubchatykh sterzhney prostranstvennogo karkasa [Authorship Certificate 690135 SU. Joint of Tubular Rods of a Space Frame].
  11. Tereshchenko A.P., Yatsoshek I., Nilova A. Avtorskoe svidetel’stvo 702133 SU. Uzlovoe soedinenie trubchatykh sterzhney prostranstvennogo karkasa [Authorship Certificate 702133 SU. Joint of Tubular Rods of a Space Frame].
  12. Nikiforov V.G., Potapov V.N., Koval’ E.A., Leonova V.N. Avtorskoe svidetel’stvo 1063958 SU. Uzlovoe soedinenie sterzhney prostranstvennogo karkasa [Authorship Certificate 1063958 SU. Joint of Rods of a Space Frame].
  13. Deev V.P., Ptichkin V.P., Kondrashov M.T., Tolstykh A.A., Korotkov V.V. Avtorskoe svidetel’stvo 779529 SSSR. Uzlovoe soedinenie sterzhney prostranstvennogo pokrytiya [Authorship Certificate 779529 USSR. Joint of Rods of a Shell Roof].
  14. Klyachin A.Z., Gorelov N.G. Avtorskoe svidetel’stvo 1805180 SSSR. Reshetchataya prostranstvennaya konstruktsiya [Authorship Certificate 1805180 USSR. Grid Space Structure].
  15. Kalugin M.V., Kormilitsyn B.I. Avtorskoe svidetel’stvo 543720 SSSR. Uzlovoe soedinenie sterzhney prostranstvennogo karkasa [Authorship Certificate 543720 USSR. Joint for Rods of a Space Frame].
  16. Kalugin M.V., Shirokov B.I., Anelikov V.I., Surin N.I. Avtorskoe svidetel’stvo 937647 SSSR. Uzlovoe soedinenie sterzhney prostranstvennogo karkasa [Authorship Certificate 937647 USSR. Joint for Rods of a Space Frame].

Download

Results 1 - 1 of 1