INFORMATION SYSTEMS AND LOGISTICS IN CIVIL ENGINEERING

Automation of the process of visualization applicable to design solutionsin the autocad environment

Vestnik MGSU 3/2013
  • Lebedeva Irina Mikhaylovna - Moscow State University of Civil Engineering (MGSU) Associate Professor, Department of Descriptive Geometry and Graphics, Moscow State University of Civil Engineering (MGSU), Moscow State University of Civil Engineering (MGSU); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sinenko Sergey Anatol’evich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Information Systems, Technology and Automation in Civil Engineering; +7 (495) 287-4914, ext. 31–07., Moscow State University of Civil Engineering (MGSU), Moscow State University of Civil Engineering (MGSU); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 228-236

The authors provide a brief description of the software algorithm designed to automatize some of the final stages of design and research into buildings and structures, namely, computer-aided realistic visualization of a simulated object in the AutoCAD environment. Special attention is driven to realistic shadows that are important whenever a construction site is positioned within the environment. The software simulates sunlight by creating a remote source of light. Diffused light is generated by a set of three additional sources of light. The software algorithm is based on a pattern of light sources simulating sunlight and skylight. The point of location of each additional source of light is pre-set by the software operator. This point is identified by the software as the set of coordinates calculated using a special subroutine. The article has a table of sun angles for any time of the day and each month of the year at the latitude of Moscow.

DOI: 10.22227/1997-0935.2013.3.228-236

References
  1. Poleshchuk N.N. AutoCAD Razrabotka prilozheniy, nastroyka i adaptatsiya [AutoCAD Application Development, Customization and Adaptation]. St.Petersburg, BKhV-Peterburg Publ., 2006.
  2. Sidenko L.A. Komp’yuternaya grafika i geometricheskoe modelirovanie [Computer Graphics and Geometric Simulation]. St.Petersburg, Piter Publ., 2009.
  3. Glotova V.V., Lebedeva I.M. Mekhanizm tsentral’nogo proetsirovaniya v komp’yuternoy grafike [Mechanism of Central Mapping in Computer Graphics]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, vol. 2, pp. 342—346.
  4. Pozitsionirovanie solnechnykh moduley. Meteorologicheskie dannye. 2012 g. [Positioning of Solar Modules. Meteorological data. 2012.] Available at: http://www.solarinntech.ru/informations/meteorological_data Date of access: 01.04.12.
  5. Dvizhenie nebesnykh tel. Spetsial’naya astrofizicheskaya observatoriya Rossiyskoy akademii nauk. 2011 g. [Motion of Celestial Bodies. Special Astrophysical Observatory of the Russian Academy of Sciences. 2011] Available at: http://www.sao.ru/Doc-k8/Science/ Date of access: 01.04.12.
  6. Folly G., Van Dam A. Osnovy interaktivnoy mashinnoy grafiki [Fundamentals of Interactive Computer Graphics]. Moscow, Mir Publ., 1987.

Download

Results 1 - 1 of 1