SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

IMPROVEMENT OF EFFICIENCYOF ENVIRONMENTAL PROTECTION FROM CONSTRUCTION WASTE

Vestnik MGSU 4/2013
  • Belova Tat’yana Vladimirovna - Samara State University of Architecture and Civil Engineering (SGASU) postgraduate student, assistant lecturer, Department of Construction of Nature Protection and Hydraulic Engineering Facilities, Samara State University of Architecture and Civil Engineering (SGASU), 194 Molodogvardeyskaya St., Samara, 443001, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bolotova Anna Aleksandrovna - Samara State University of Architecture and Civil Engineering (SGASU) postgraduate student, assistant lecturer, Department of Construction of Nature Protection and Hydraulic Engineering Facilities; +7 (846) 242-21-71., Samara State University of Architecture and Civil Engineering (SGASU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 92-101

Environmental problems arising during construction and restructuring of buildings and structures in urban areas are considered in the article. A brief analysis of the knowhow used in the course of construction and restructuring of new and old construction facilities shows that the construction works that are most hazardous to the environment consist in demolition of buildings or their parts using the explosive method of demolition and stone dressing using high-speed cutting and grinding machines. These types of work generate a lot of construction waste and dust harmful for the environment. Despite any scheduled environmental protection actions, construction wastes pollute each component of the environment to a different extent. Environmental protection is a complex problem of vital importance, and the international community must concentrate its efforts to tackle it as soon as possible.Analysis of unauthorized landfills and methods of urban waste management help local communities to develop and implement methods of environmental protection.New effective know-hows are employed to reduce the impact of soil pollutants and to prevent further pollution of urban ponds in the course of construction works within urban areas. Advanced patented methodologies have been developed at Samara State University of Architecture and Civil Engineering. They include the use of quick-setting substances capable of generating impervious elements. Implementation of these methods will reduce pollution of urban areas, their atmosphere, ground waters and ponds.The authors also describe particular aspects of the impact produced by the mining industry on the environment. Values of river water quality indices have been studied, and new effective actions aimed at protection of ponds from pollution are proposed. The actions prevent access of pollutants to the pond.

DOI: 10.22227/1997-0935.2013.4.92-101

References
  1. Bal’zannikov M.I., Vavilova T.Ya. Okhrana okruzhayushchey sredy. Ustoychivoe razvitie. Bezopasnost’ zhiznedeyatel’nosti: Terminologicheskiy slovar’. [Environmental Protection. Sustainable Development. Life Safety. Dictionary of Terms.] Samara, SGASU Publ., 2005, 288 p.
  2. Shabanov V.A., Galitskova Yu.M., Bal’zannikov M.I. Vliyanie neobustroennykh gorodskikh svalok na okruzhayushchuyu sredu [Influence of Unattended Urban Landfills on the Environment]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2009, no. 4, pp. 38—41.
  3. Galitskova Yu.M. Zashchita pochvy i gruntov gorodskikh territoriy ot vozdeystviya neobustroennykh svalok [Protection of Urban Soils and Grounds from the Impact of Unattended Landfills]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 100—104.
  4. Telichenko V.I., Galitskova Yu.M. Snizhenie vozdeystviya neobustroennykh svalok v usloviyakh gorodskikh territoriy [Reduction of the Impact of Unattended Landfills in the Urban Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 191—196.
  5. Bal’zannikov M.I., Petrov V.P. Ekologicheskie aspekty proizvodstva stroitel’nykh materialov iz otkhodov promyshlennosti [Ecological Aspects of Production of Construction Materials from Industrial Waste]. Sovremennoe sostoyanie i perspektiva razvitiya stroitel’nogo materialovedeniya. Vos’mye akademicheskie chteniya otdeleniya stroitel’nykh nauk RAASN. [The State of and Prospects for Development of the Construction Material Science. 8th Academic Readings, Section of Construction Sciences, RAACS]. Samara, SGASU Publ., 2004, pp. 47—50.
  6. Bal’zannikov M.I., Lukenyuk E.V. Primenenie interpolyatsionnykh i ekstrapolyatsionnykh modeley v upravlenii kachestvom okruzhayushchey sredy [Using Interpolational and Extrapolational Models in Environmental Quality Management]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2007, no 7, pp. 38—41.
  7. Bal’zannikov M.I., Lukenyuk E.V. Ispol’zovanie geoinformatsionnoy sistemy operativnogo ekologicheskogo monitoringa dlya upravleniya kachestvom okruzhayushchey sredy [Using Geoinformational System of Operative Ecological Monitoring to Manage the Quality of the Environment]. Ekologicheskie sistemy i pribory [Ecological Systems and Devices]. 2008, no. 2, pp. 3—5.
  8. Bal’zannikov M.I., Lukenyuk E.V., Lukenyuk A.I. Ekologicheskaya sistema sbora informatsii o sostoyanii regiona. Patent RF 70026. [Ecological System of Collection of Information about the Condition of the Region. RF Patent 70026.] 2008, Bulletin 1.
  9. Bal’zannikov M.I., Kleymenova E.F., Tiranin V.E. Sistema sbora informatsii. Patent RF na poleznuyu model’ 117688. [Information Collection System. RF Patent Protecting Utility Model 117688]. 2012, Bulletin 18.
  10. Bal’zannikov M.I., Galitskova Yu.M. Problemy ekologii vodnykh ob”ektov, vzaimodeystvuyushchikh s krupnym gorodom [Problems of Ecology of Aquatic Bodies Interacting with Major Cities]. Ekologiya i bezopasnost’ zhiznedeyatel’nosti. Sb. materialov Mezhdunar. nauch.-praktich. konf. [Ecology and Life Safety. Collected works of International Scientific and Practical Conference]. Penza, PDZ Publ., 2002, pp. 210—213.
  11. Belozerova R.Kh., Shabanova A.V. Ekologo-analiticheskaya otsenka sostoyaniya gorodskikh vodoemov g. Samary [Eco-analytical Assessment of the Condition of Urban Aquatic Bodies in Samara]. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. [News of Institutions of Higher Education. Applied Chmestry and Biotechnology]. 2011, vol. 1, no. 1, pp. 137—141.
  12. Belozerova R.Kh., Shabanova A.V. Razrabotka metodiki otsenki i sravneniya urovnya zagryaznennosti gorodskikh vodoemov s ispol’zovaniem shkaly Kharringtona [Development of Methodology for Assessment and Comparison of Pollution of Urban Aquatic Bodies Using Harrington Scale]. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. [News of Institutions of Higher Education. Applied Chmestry and Biotechnology]. 2011, vol. 1, no. 1, pp. 142—144.
  13. Bal’zannikov M.I., Vyshkin E.G. Hydroelectric Power Plants Reservoirs and Their Impact on the Environment. Environment. Technology. Resources. Proceedings of the 8th International Scientific and Practical Conference. Rezeknes Augstskova, Rezekne, RA Izdevnieciba. 2011, vol. 1, pp. 171—174.
  14. Bal’zannikov M.I., Zakharov D.G. Sposob zashchity okruzhayushchey sredy. Patent RF 2369706. [Environmental Protection Method. RF Patent 2369706.] 2009, Bulletin 28.
  15. Bal’zannikov M.I., Zakharov D.G., Ivanova S.B. Sposob zashchity okruzhayushchey sredy. Patent 2411334. [Environmental Protection Method. RF Patent 2411334.] 2011, Bulletin 4.
  16. Bal’zannikov M.I., Galitskova Yu.M. Sposob zashchity okruzhayushchey sredy ot zagryazneniya bytovymi i promyshlennymi otkhodami. Patent RF 2294245. [Method of Environmental Protection from Household and Industrial Waste. RF Patent 2294245.] 2007, Bulletin 6.
  17. Bal’zannikov M.I., Galitskova Yu.M. Sposob zashchity okruzhayushchey sredy ot zagryazneniya bytovymi otkhodami. Patent RF 2372154. [Method of Environmental Protection from Household Waste. RF Patent 2372154]. 2009, Bulletin 31.
  18. Bal’zannikov M.I., Bolotova A.A. Sposob zashchity vodoema ot zagryazneniya. Patent RF 2392375. [Method of Protection of Aquatic Bodies from Pollution. RF Patent 2392375.]. 2010, Bulletin 17.
  19. Bal’zannikov M.I., Bolotova A.A. Sposob zashchity vodoema ot zagryazneniya. Patent RF 2441963. [Method of Protection of Aquatic Bodies from Pollution. RF Patent 2441963.] 2012, Bulletin 4.
  20. Shabanov V.A., Bal’zannikov M.I., Mikhasek A.A. Sposob vozvedeniya plotiny. Patent RF 2330140. [Dam Construction Method. RF Patent 2330140.] 2008, Bulletin 21.
  21. Bal’zannikov M.I., Mikhasek A.A. Primenenie bystrotverdeyushchikh veshchestv dlya formirovaniya protivofil’tratsionnykh elementov v plotinakh iz kamennykh materialov [Using Quick-setting Substances to Produce Anti-filtering Elements of Masonry Dams]. Inzhenernostroitel’nyy zhurnal [Journal of Civil Engineering]. 2012, no. 3, pp. 48—53.
  22. Bal’zannikov M.I., Shabanov V.A., Galitskova Yu.M. Sposob zashchity beregovogo otkosa ot razrusheniya. Patent RF 2237129. [Method of Protection of Bank Slopes from Destruction. RF Patent 2237129.] 2004, Bulletin 27.
  23. Bal’zannikov M.I., Galitskova Yu.M. Zashchita beregovykh sklonov ot razrusheniya [Protection of Bank Slopes from Destruction]. Ekobaltika 2006. Sb. trudov VI Mezhdunar. Molodezhnogo ekologicheskogo foruma stran Baltiyskogo regiona. [Ecobaltika 2006. Collected works of the 4th International Ecological Forum of the Youth of the Baltic Region]. St.Petersburg, SPbGPU Publ., 2006, pp. 58—60.
  24. Shabanov V.A., Akhmedova E.A., Bal’zannikov M.I. Kontseptsiya razvitiya beregovoy linii reki v predelakh krupnogo goroda [River Bank Line Development Concept within a Major City]. Vestnik Volzhskogo regional’nogo otdeleniya Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Proceedings of Volzhskiy Regional Section of the Russian Academy of Architecture and Construction Sciences]. Nizhny Novgorod, NNGASU Publ., 2004, no. 7, pp. 27—31.

Download

THEORETICAL PROVISIONS OF FORMATION OF METHODOLOGY FOR CREATION OF COMPLEX SYSTEM OF CONSTRUCTION WASTE TREATMENT

Vestnik MGSU 1/2017 Volume 12
  • Tskhovrebov Eduard Stanislavovich - Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”) Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.
  • Velichko Evgeniy Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 83-93

Resource saving, ecological safety, rational use of natural resources and environmental protection are currently the priority tasks in terms of implementation of the course towards a sustainable development of the Russian state. Transformation of waste into secondary raw materials for the manufacture of environmentally friendly construction products and other products makes it possible to resolve two problems at once: preserve valuable resources and reduce the environmental load. The article presents theoretical provisions and background for methodology of forming a model of complex system of construction waste treatment in terms of modern tasks for creation of new economically efficient, resource-saving, ecologically safe and waste-free technologies and processes in the industry, as well as the requirements of regulatory acts in the sphere of environmental safety, hazardous waste management, environmental protection and rational use of natural resources. The final target indicator of scientific research in this sphere is the minimization of waste amounts dispatched to burial facilities due to creation of optimal, reasonable from the technical-and-economic point of view, chain of complexes for treatment thereof, preliminary preparation for further recycling, including sorting, dismantling, cleaning, and disposal. Comprehensive assessment and subsequent reasonable selection of optimal scientific methods of research of factors, indicators and restrictions that form the constituent elements of methodology of creation of the economic and managerial model of the complex system of waste treatment, will be continued.

DOI: 10.22227/1997-0935.2017.1.83-93

Download

SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

Vestnik MGSU 9/2015
  • Tskhovrebov Eduard Stanislavovich - Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”) Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.
  • Velichko Evgeniy Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 95-110

In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

DOI: 10.22227/1997-0935.2015.9.95-110

References
  1. Strategiya razvitiya promyshlennosti stroitel’nykh materialov i industrial’nogo domostroeniya na period do 2020 goda. Utverzhdena prikazom Ministerstva regional’nogo razvitiya RF ot 30 maya 2011 g. № 262 [Development Strategy of Building Materials Production and Industrial Housing Construction for the Period up to 2020. Approved by the Order of the Ministry of Regional Development of the Russian Federation dated 30 May 2011, no. 262]. Moscow, 2011, 56 p. (In Russian)
  2. Golubin A.K., Klepatskaya I.E. Razvitie rynochnykh otnosheniy v sisteme obrashcheniya s otkhodami [Development of Market Relations in the System of Waste Management]. Transportnoe delo Rossii [Transport Business of Russia]. 2009, no. 4, pp. 104—106. (In Russian)
  3. Zheltobryukhov V.F., Rybal’skiy N.G., Yakovlev A.S., editors. Deyatel’nost’ po obrashcheniyu s opasnymi otkhodami : v 2-kh tt. [Activities for Hazardous Waste Management : in 2 vols.]. Moscow, REFIA Publ., 2003, vol. 2, 444 p. (In Russian)
  4. Jackson K., Watkins E. «Musornaya» politika ES: instrumenty kontrolya [EU Waste Law: the Instruments of Control]. Tverdye bytovye otkhody [Municipal Solid Waste]. 2013, no. 1 (79), pp. 54—57. (In Russian)
  5. Tikhotskaya I.S. Yaponiya: Innovatsionnyy podkhod k upravleniyu TBO [Japan: an Innovative Approach to Solid Waste Management]. Tverdye bytovye otkhody [Municipal Solid Waste]. 2013, no. 6 (84), pp. 52—57. (In Russian)
  6. Celik N., Antmann E., Shi X., Hayton B. Simulation-Based Optimization for Planning of Effective Waste Reduction, Diversion, and Recycling Programs. Proc. of the 2012 Industrial and Systems Engineering Research Conference. Available at: http://www.coe.miami.edu/celik/swmwebsite/publications/Y1_ConferencePaper_I.pdf. Date of access: 16.03.2015.
  7. Nixon J.D., Wright D.G., Dey P.K., Ghosh S.K., Davies P.A. A Comparative Assessment of Waste Incinerators in the UK. Waste Management. 2013, vol. 33, no. 11, pp. 2234—2244. DOI: http://dx.doi.org/10.1016/j.wasman.2013.08.001.
  8. Vahdani B., Tavakkoli-Moghaddam R., Baboli A., Mousavi S. A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach. World Academy of Science, Engineering and Technology. 2013, vol. 78, pp. 45—49.
  9. Tskhovrebov E.S., Chetvertakov G.V., Shkanov S.I. Ekologicheskaya bezopasnost’ v stroitel’noy industrii [Environmental Safety in the Construction Industry]. Moscow, Al’fa-M Publ., 2014, 304 p. (Sovremennye tekhnologii [Modern Technologies]) (In Russian)
  10. Tskhovrebov E.S., Velichko E.G. Voprosy okhrany okruzhayushchey sredy i zdorov’ya cheloveka v protsesse obrashcheniya stroitel’nykh materialov [The Issues of Environmental Protection and Human Health in the Process of Building Materials Treatment]. Stroitel’nye materialy [Construction Materials]. 2014, no. 5, pp. 99—103. (In Russian)
  11. Gubenko V.K., Lyamzin A.A., Pomazkov M.V., Gubenko O.V. Logistika otkhodov v megapolise [Waste Logistics in the Metropolis]. Materialy 11 Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the 11th International Scientific and Practical Conference]. Kiev, Ministry of transport and communications of Ukraine, 2009, 200 p. (In Russian)
  12. Sadov A.V., Tskhovrebov E.S. Puti resheniya problemy obrashcheniya s otkhodami na urovne regiona [Solutions to the Problems of Waste Management in the Region]. Vestnik RAEN [Bulletin of the Russian Academy of Natural Sciences]. 2011, no. 5, pp. 29—31. (In Russian)
  13. Tskhovrebov E.S., Yayli E.A., Tserenova M.P., Yur’ev K.V. Obespechenie ekologicheskoy bezopasnosti pri proektirovanii ob”ektov nedvizhimosti i provedenii stroitel’nykh rabot [Ensuring Environmental Safety When Designing Real Estate Objects and Construction Works]. Monograph. Saint Petersburg, RGGMU Publ., 2013, 360 p. (In Russian)
  14. Kutsenko V.V., Tskhovrebov E.S., Sidorenko S.N., Tserenova M.P., Kirichuk A.A. Problemy obespecheniya ekologicheskoy bezopasnosti regiona [Problems of Environmental Security of the Region]. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost’ zhiznedeyatel’nosti [PFUR Bulletin. Series: Ecology and Safety of Living]. 2013, no. 2, pp. 75—82. (In Russian)
  15. Belevi H., Baccini P. Long-term Emission from Municipal Solid Waste Landfills. Landfills of waste: Leachate. London, 1992, pp. 12—15.
  16. Vaysman Ya.I., Tagilova O.A., Sadokhina E.L. Razrabotka metodologicheskikh printsipov sozdaniya i optimizatsii ucheta dvizheniya otkhodov s tsel’yu povysheniya ekologo- ekonomiko-sotsial’noy effektivnosti upravleniya ikh obrashcheniem [Development of Methodological Principles of Creating and Optimizing Account for the Movement of Waste with the Aim of Improving the Ecologic, Economic and Social Efficiency of Their Treatment Management]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2013, no. 12, pp. 40—45. (In Russian)
  17. Kolotyrin K.P. Osobennosti tekhnologicheskogo obespecheniya protsessa obrashcheniya s otkhodami potrebleniya [Peculiarities of the Technological Process of Consumption Waste Treatment]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Saratov State Technical University]. 2008, vol. 3, no. 1 (34), pp. 164—174. (In Russian)
  18. Kostarev S.N., Murynov A.I. Avtomatizirovannoe proektirovanie, upravlenie i sistemnyy analiz prirodno-tekhnicheskikh ob
  19. Abramova M.V., Bachurina N.D. Setevaya model’ upravleniya potokami otkhodov Network Model of Waste Streams]. Vestnik Vostochnoukrainskogo universiteta im. V. Dalya [Bulletin of the Technological Institute of East Ukraine Volodymyr Dahl National University]. 2008, no. 3 (121), pp. 73—78. (In Russian)
  20. Alimov A. Ispol’zovanie vozmozhnostey logistiki v modernizatsii raboty s otkhodami proizvodstva (logistika otkhodov) [Use of Logistics Capabilities in the Modernization of waste Management (Waste Logistics)]. RISK: Resursy, Informatsiya, Snabzhenie, konkurentsiya [RISK: Resources, Information, Supply, Competition]. 2009, no. 1, pp. 37—39. (In Russian)
  21. Aleksanin A.V. Avtomatizatsiya upravleniya otkhodami stroitel’nogo proizvodstva [Automation of Construction Waste Management]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 10, pp. 79—81. (In Russian)
  22. Levkin G.G. Ekologicheskie aspekty upravleniya tsepyami postavok [Environmental Aspects of Supply Chain Management]. Logistika [Logistics]. 2009, no. 2, pp. 24—25. (In Russian)
  23. Terent’ev P.A. Klassifikatsii i modeli logistiki vozvratnykh potokov [The Classification and Models of Logistics of Return Flows]. Logistika segodnya [Logistics Today]. 2010, no. 4, pp. 242—251. (In Russian)
  24. Sevimoglu O., Tansel B. Effect of Persistent Compounds in Landfill Gas on Engine Performance during Energy Recovery: A Case Study. Waste Management. 2013, vol. 33, no. 1, pp. 74—80. DOI: http://dx.doi.org/10.1016/j.wasman.2012.08.016.
  25. Perekal’skiy V.A. Otechestvennyy i zarubezhnyy opyt ekonomiko-matematicheskogo modelirovaniya v sfere upravleniya obrashcheniem s otkhodami [Domestic and Foreign Experience of Economic Mathematical Modeling in Waste Management]. Strategii biznesa [Business Strategies]. 2013, no. 2 (2), pp. 38—41. (In Russian)
  26. Haight F. Mathematical Theories of Traffic Flows. Academic Press, N.Y., 1963.
  27. Gasnikov A.V., Klenov S.L., Nurminskiy E.A., Kholodov Ya.A., Shamray N.B. Vvedenie v matematicheskoe modelirovanie transportnykh potokov [Introduction of Traffic Flows to Mathematical Modeling]. Moscow, Publishing house of the Moscow Center for Continuous Mathematical Education, 2012, 428 p. (In Russian)
  28. Smirnov N.N., Kiselev A.B., Nikitin V.F., Yumashev M.V. Matematicheskoe modelirovanie avtotransportnykh potokov [Mathematical Modeling of Road Traffic Flows]. Moscow, MGU Publ., 1999, 184 p. (In Russian)
  29. Marković D., Janošević D., Jovanović M., Nikolić V. Application Method for Optimization in Solid Waste Management System in the City of Niš. Facta universitatis. Series: Mechanical Engineering. 2010, vol. 8, no. 1, pp. 65—67.
  30. Kornilov A.M., Pazyuk K.T. Ekonomiko-matematicheskoe modelirovanie retsiklinga tverdykh bytovykh otkhodov i ispol’zovanie vtorichnogo material’nogo syr’ya [Economic and Mathematical Modeling of Solid Waste Recycling and the Use of Secondary Raw Material]. Vestnik Tikhookeanskogo gosudarstvennogo universiteta [Proceedings of Pacific National University]. 2008, no. 2 (9), pp. 69—80. (In Russian)

Download

Results 1 - 3 of 3