SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

IMPROVEMENT OF EFFICIENCYOF ENVIRONMENTAL PROTECTION FROM CONSTRUCTION WASTE

Vestnik MGSU 4/2013
  • Belova Tat’yana Vladimirovna - Samara State University of Architecture and Civil Engineering (SGASU) postgraduate student, assistant lecturer, Department of Construction of Nature Protection and Hydraulic Engineering Facilities, Samara State University of Architecture and Civil Engineering (SGASU), 194 Molodogvardeyskaya St., Samara, 443001, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bolotova Anna Aleksandrovna - Samara State University of Architecture and Civil Engineering (SGASU) postgraduate student, assistant lecturer, Department of Construction of Nature Protection and Hydraulic Engineering Facilities; +7 (846) 242-21-71., Samara State University of Architecture and Civil Engineering (SGASU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 92-101

Environmental problems arising during construction and restructuring of buildings and structures in urban areas are considered in the article. A brief analysis of the knowhow used in the course of construction and restructuring of new and old construction facilities shows that the construction works that are most hazardous to the environment consist in demolition of buildings or their parts using the explosive method of demolition and stone dressing using high-speed cutting and grinding machines. These types of work generate a lot of construction waste and dust harmful for the environment. Despite any scheduled environmental protection actions, construction wastes pollute each component of the environment to a different extent. Environmental protection is a complex problem of vital importance, and the international community must concentrate its efforts to tackle it as soon as possible.Analysis of unauthorized landfills and methods of urban waste management help local communities to develop and implement methods of environmental protection.New effective know-hows are employed to reduce the impact of soil pollutants and to prevent further pollution of urban ponds in the course of construction works within urban areas. Advanced patented methodologies have been developed at Samara State University of Architecture and Civil Engineering. They include the use of quick-setting substances capable of generating impervious elements. Implementation of these methods will reduce pollution of urban areas, their atmosphere, ground waters and ponds.The authors also describe particular aspects of the impact produced by the mining industry on the environment. Values of river water quality indices have been studied, and new effective actions aimed at protection of ponds from pollution are proposed. The actions prevent access of pollutants to the pond.

DOI: 10.22227/1997-0935.2013.4.92-101

References
  1. Bal’zannikov M.I., Vavilova T.Ya. Okhrana okruzhayushchey sredy. Ustoychivoe razvitie. Bezopasnost’ zhiznedeyatel’nosti: Terminologicheskiy slovar’. [Environmental Protection. Sustainable Development. Life Safety. Dictionary of Terms.] Samara, SGASU Publ., 2005, 288 p.
  2. Shabanov V.A., Galitskova Yu.M., Bal’zannikov M.I. Vliyanie neobustroennykh gorodskikh svalok na okruzhayushchuyu sredu [Influence of Unattended Urban Landfills on the Environment]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2009, no. 4, pp. 38—41.
  3. Galitskova Yu.M. Zashchita pochvy i gruntov gorodskikh territoriy ot vozdeystviya neobustroennykh svalok [Protection of Urban Soils and Grounds from the Impact of Unattended Landfills]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 100—104.
  4. Telichenko V.I., Galitskova Yu.M. Snizhenie vozdeystviya neobustroennykh svalok v usloviyakh gorodskikh territoriy [Reduction of the Impact of Unattended Landfills in the Urban Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 191—196.
  5. Bal’zannikov M.I., Petrov V.P. Ekologicheskie aspekty proizvodstva stroitel’nykh materialov iz otkhodov promyshlennosti [Ecological Aspects of Production of Construction Materials from Industrial Waste]. Sovremennoe sostoyanie i perspektiva razvitiya stroitel’nogo materialovedeniya. Vos’mye akademicheskie chteniya otdeleniya stroitel’nykh nauk RAASN. [The State of and Prospects for Development of the Construction Material Science. 8th Academic Readings, Section of Construction Sciences, RAACS]. Samara, SGASU Publ., 2004, pp. 47—50.
  6. Bal’zannikov M.I., Lukenyuk E.V. Primenenie interpolyatsionnykh i ekstrapolyatsionnykh modeley v upravlenii kachestvom okruzhayushchey sredy [Using Interpolational and Extrapolational Models in Environmental Quality Management]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2007, no 7, pp. 38—41.
  7. Bal’zannikov M.I., Lukenyuk E.V. Ispol’zovanie geoinformatsionnoy sistemy operativnogo ekologicheskogo monitoringa dlya upravleniya kachestvom okruzhayushchey sredy [Using Geoinformational System of Operative Ecological Monitoring to Manage the Quality of the Environment]. Ekologicheskie sistemy i pribory [Ecological Systems and Devices]. 2008, no. 2, pp. 3—5.
  8. Bal’zannikov M.I., Lukenyuk E.V., Lukenyuk A.I. Ekologicheskaya sistema sbora informatsii o sostoyanii regiona. Patent RF 70026. [Ecological System of Collection of Information about the Condition of the Region. RF Patent 70026.] 2008, Bulletin 1.
  9. Bal’zannikov M.I., Kleymenova E.F., Tiranin V.E. Sistema sbora informatsii. Patent RF na poleznuyu model’ 117688. [Information Collection System. RF Patent Protecting Utility Model 117688]. 2012, Bulletin 18.
  10. Bal’zannikov M.I., Galitskova Yu.M. Problemy ekologii vodnykh ob”ektov, vzaimodeystvuyushchikh s krupnym gorodom [Problems of Ecology of Aquatic Bodies Interacting with Major Cities]. Ekologiya i bezopasnost’ zhiznedeyatel’nosti. Sb. materialov Mezhdunar. nauch.-praktich. konf. [Ecology and Life Safety. Collected works of International Scientific and Practical Conference]. Penza, PDZ Publ., 2002, pp. 210—213.
  11. Belozerova R.Kh., Shabanova A.V. Ekologo-analiticheskaya otsenka sostoyaniya gorodskikh vodoemov g. Samary [Eco-analytical Assessment of the Condition of Urban Aquatic Bodies in Samara]. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. [News of Institutions of Higher Education. Applied Chmestry and Biotechnology]. 2011, vol. 1, no. 1, pp. 137—141.
  12. Belozerova R.Kh., Shabanova A.V. Razrabotka metodiki otsenki i sravneniya urovnya zagryaznennosti gorodskikh vodoemov s ispol’zovaniem shkaly Kharringtona [Development of Methodology for Assessment and Comparison of Pollution of Urban Aquatic Bodies Using Harrington Scale]. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. [News of Institutions of Higher Education. Applied Chmestry and Biotechnology]. 2011, vol. 1, no. 1, pp. 142—144.
  13. Bal’zannikov M.I., Vyshkin E.G. Hydroelectric Power Plants Reservoirs and Their Impact on the Environment. Environment. Technology. Resources. Proceedings of the 8th International Scientific and Practical Conference. Rezeknes Augstskova, Rezekne, RA Izdevnieciba. 2011, vol. 1, pp. 171—174.
  14. Bal’zannikov M.I., Zakharov D.G. Sposob zashchity okruzhayushchey sredy. Patent RF 2369706. [Environmental Protection Method. RF Patent 2369706.] 2009, Bulletin 28.
  15. Bal’zannikov M.I., Zakharov D.G., Ivanova S.B. Sposob zashchity okruzhayushchey sredy. Patent 2411334. [Environmental Protection Method. RF Patent 2411334.] 2011, Bulletin 4.
  16. Bal’zannikov M.I., Galitskova Yu.M. Sposob zashchity okruzhayushchey sredy ot zagryazneniya bytovymi i promyshlennymi otkhodami. Patent RF 2294245. [Method of Environmental Protection from Household and Industrial Waste. RF Patent 2294245.] 2007, Bulletin 6.
  17. Bal’zannikov M.I., Galitskova Yu.M. Sposob zashchity okruzhayushchey sredy ot zagryazneniya bytovymi otkhodami. Patent RF 2372154. [Method of Environmental Protection from Household Waste. RF Patent 2372154]. 2009, Bulletin 31.
  18. Bal’zannikov M.I., Bolotova A.A. Sposob zashchity vodoema ot zagryazneniya. Patent RF 2392375. [Method of Protection of Aquatic Bodies from Pollution. RF Patent 2392375.]. 2010, Bulletin 17.
  19. Bal’zannikov M.I., Bolotova A.A. Sposob zashchity vodoema ot zagryazneniya. Patent RF 2441963. [Method of Protection of Aquatic Bodies from Pollution. RF Patent 2441963.] 2012, Bulletin 4.
  20. Shabanov V.A., Bal’zannikov M.I., Mikhasek A.A. Sposob vozvedeniya plotiny. Patent RF 2330140. [Dam Construction Method. RF Patent 2330140.] 2008, Bulletin 21.
  21. Bal’zannikov M.I., Mikhasek A.A. Primenenie bystrotverdeyushchikh veshchestv dlya formirovaniya protivofil’tratsionnykh elementov v plotinakh iz kamennykh materialov [Using Quick-setting Substances to Produce Anti-filtering Elements of Masonry Dams]. Inzhenernostroitel’nyy zhurnal [Journal of Civil Engineering]. 2012, no. 3, pp. 48—53.
  22. Bal’zannikov M.I., Shabanov V.A., Galitskova Yu.M. Sposob zashchity beregovogo otkosa ot razrusheniya. Patent RF 2237129. [Method of Protection of Bank Slopes from Destruction. RF Patent 2237129.] 2004, Bulletin 27.
  23. Bal’zannikov M.I., Galitskova Yu.M. Zashchita beregovykh sklonov ot razrusheniya [Protection of Bank Slopes from Destruction]. Ekobaltika 2006. Sb. trudov VI Mezhdunar. Molodezhnogo ekologicheskogo foruma stran Baltiyskogo regiona. [Ecobaltika 2006. Collected works of the 4th International Ecological Forum of the Youth of the Baltic Region]. St.Petersburg, SPbGPU Publ., 2006, pp. 58—60.
  24. Shabanov V.A., Akhmedova E.A., Bal’zannikov M.I. Kontseptsiya razvitiya beregovoy linii reki v predelakh krupnogo goroda [River Bank Line Development Concept within a Major City]. Vestnik Volzhskogo regional’nogo otdeleniya Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Proceedings of Volzhskiy Regional Section of the Russian Academy of Architecture and Construction Sciences]. Nizhny Novgorod, NNGASU Publ., 2004, no. 7, pp. 27—31.

Download

DEVELOPMENT OF A REGION-WIDE MECHANISM FOR CENTRALIZED MANAGEMENTOF CONSTRUCTION WASTE

Vestnik MGSU 6/2013
  • Aleksanin Aleksandr Vyacheslavovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Technology, Organization and Management of Construction Processes, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sborshchikov Sergey Borisovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Economic Sciences, Professor, acting chair, Department of Technology, Organization and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 229-235

Today no effective centralized control system is available for building waste. However, it may be generated through the establishment of special-purpose logistics centers. Logistics centers will be designated for the regulation of processes of building waste handling. Depending on the status of development of building waste control systems in specific regions, logistics centers of one of the following two types are to be installed: multi-component logistics centers or information logistics centers. The objective is to develop a mechanism for generation and transfer of information streams in order to compile an effective model of waste management for construction and demolition works. The mechanism is to involve each participant of waste-related processes. If this mechanism is in place, waste transportation and amount/composition analysis will be streamlined to assure timely information delivery to/from construction organizations, transport companies, waste processing enterprises, and consumers of secondary products. In the article, the mechanism of effective region-wide management of construction waste is proposed depending on the status of development of waste processing facilities in different areas (regions, etc.). Patterns of interaction between the parties involved in this process are also analyzed.

DOI: 10.22227/1997-0935.2013.6.229-235

References
  1. Yudin A.G. Smena paradigmy — ot upravleniya otkhodami k upravleniyu resursami [Paradigm Replacement: from Waste Management to Resources Management]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2010, no. 3, pp. 30—32.
  2. Kostarev S.N. Razrabotka parametricheskoy modeli upravleniya poligonom tverdykh bytovykh otkhodov [Development of a Parametric Model for Solid Household Waste Landfill Management]. Sovremennye problemy nauki i obrazovaniya [Contemporary Problems of Science and Education]. 2013, no.1, pp. 188—196.
  3. Ulanova Z.A. Sistema obrashcheniya s tverdymi bytovymi otkhodami na rossiyskom severe [System of Solid Household Waste Treatment in the North of Russia]. Natsional’nye interesy: prioritety i bezopasnost’. [National Concerns: Priorities and Safety]. 2012, no. 47, pp. 62—65.
  4. Il’inykh G.V., Slyusar’ N.N., Korotaev V.N., Vaysman Ya.I., Samutin N.M. Issledovaniya sostava tverdykh bytovykh otkhodov i otsenka ikh sanitarno-epidemiologicheskoy opasnosti [Studies of the Composition of Solid Household Waste and Assessment of Its Sanitary and Epidemiological Harmfulness]. Gigiena i sanitariya [Hygiene and Sanitation]. 2013, no. 1, pp. 53—55.
  5. Aleksanin A.V., Sborshchikov S.B. Upravlenie stroitel’nymi otkhodami na osnove sozdaniya spetsializirovannykh logisticheskikh tsentrov [Construction Waste Management through Development of Specialized Logistics Centers]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Construction]. 2013, no. 2, pp. 66—68.
  6. Aleksanin A.V., Sborshchikov S.B. Povyshenie effektivnosti upravleniya otkhodami stroitel’nogo proizvodstva na osnove razvitiya informatizatsii i normativnoy bazy [Improvement of Efficiency of Management of Construction Waste through Development of Information Systems and the Regulatory Framework]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 148—155.
  7. Rukovodstvo k Svodu znaniy po upravleniyu proektami [Guidebook for Collection of Project Management Information]. PMI Publ., 2008, 241 p.
  8. Dablanca L., Ross C. Atlanta: a Mega Logistics Center in the Piedmont Atlantic Megaregion (PAM). Journal of Transport Geography. 2012, vol. 24, pp. 432—442.
  9. Kayikci Y. A Conceptual Model for Intermodal Freight Logistics Centre Location Decisions. Procedia - Social and Behavioral Sciences. 2010, vol. 2, no. 3, pp. 6297—6311.
  10. Eckhardta J., Rantala J. The Role of Intelligent Logistics Centres in a Multimodal and Cost-effective Transport System. Procedia - Social and Behavioral Sciences. 2012, vol. 48, pp. 612—621.

Download

Results 1 - 2 of 2