RESEARCH OF BUILDING MATERIALS

Effect of carbon nanotubes on the properties of pmb and asphalt concrete

Vestnik MGSU 11/2015
  • Shekhovtsova Svetlana Yur’evna - Belgorod State Technological University named after V.G. Shukhov (BSTU) postgraduate student, Department of Automobile and Rail Roads, Belgorod State Technological University named after V.G. Shukhov (BSTU), 46 Kostyukova str., Belgorod, 308012, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vysotskaya Marina Alekseevna - Belgorod State Technological University named after V.G. Shukhov (BSTU) Candidate of Technical sciences, Associate Professor, Department of Automobile and Rail Roads, Belgorod State Technological University named after V.G. Shukhov (BSTU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 110-119

In the modern world nanotechnologies are an integral part of successful and progressive development of all the areas of activity. Materials science is not an exception. The authors studied the method of nanomodification and its influence on the performance properties of polymer-modified binder (PMB) and asphalt concrete, produced on their basis. It is established that nanomodified PMB are less susceptible to aging, which is a consequence of the processes of peptization of asphalt-resin complexes (ARC) in the structure of the modified binder and the crosslinking with the polymer matrix. It is revealed that nanotubes (SWCN or MWCN) used as a modifier, act as crosslinking agent and the inhibitor of the aging process in a PMB. The influence of nanomodified PMB on strength and deformation properties of asphalt concrete is investigated. It was found out that the use of modified binder in the asphalt concrete mixtures enhances the water resistance of asphalt concrete, heat resistance and shear-resistance.

DOI: 10.22227/1997-0935.2015.11.110-119

References
  1. Vysotskaya M.A., Kuznetsov D.A., Rusina S.Yu., Chevtaeva E.V., Belikov D.A. Tendentsii razvitiya nanomodifikatsii kompozitov na organicheskikh vyazhushchikh v dorozhno-stroitel’noy otrasli [Development Trends of Nanomodifikation of Composites on Organic Binders in Road Construction]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2013, no. 6, pp. 17—20. (In Russian)
  2. Bazhenov Yu.M., Korolev E.V. Nanotekhnologiya i nanomodifitsirovanie v stroitel’nom materialovedenii. Zarubezhnyy i otechestvennyy opyt [Nanotechnology and Nanomodification in Building Materials Science. Foreign and Domestic Experience]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2007, no. 2, pp. 17—22. (In Russian)
  3. Inozemtsev S.S., Korolev E.V. Ekspluatatsionnye svoystva nanomodifitsirovannykh shchebenochno-mastichnykh asfal’tobetonov [Operational Properties of Nanomodified Stone Mastic Asphalt]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 3, pp. 29—39. (In Russian)
  4. Quintero L.S., Sanabria L.E. Analysis of Colombian Bitumen Modified with a Nanocomposite. Journal of Testing and Evaluation (JTE). 2012, vol. 40, no. 7, pp. 93—97. DOI: https://dx.doi.org/10.1520/JTE20120198.
  5. Geim A.K., Novoselov K.S. The Rise of Graphene. Nature Materials. 2007, no. 6, pp. 183—191. DOI: https://dx.doi.org/10.1038/nmat1849.
  6. Stepanishchev N.V. Nanokompozity: problemy napolneniya [Nanocomposites: Problems of Filling]. Plastiks : Industriya pererabotki plastmass [Plastics: Plastics Processing Industry]. 2010, no. 4, pp. 23—27. (In Russian)
  7. Banhart F., Füller T., Redlich P., Ajayan P.M. The Formation, Annealing and Self-Compression of Carbon Onions under Electron Irradiation. Chemical Physics Letters. 1997, vol. 269, no. 3—4, pp. 349—355. DOI: https://dx.doi.org/10.1016/S0009-2614(97)00269-8.
  8. Dolmatov V.Yu. Kompozitsionnye materialy na osnove elastomernykh i polimernykh matrits, napolnennykh nanoalmazami detonatsionnogo sinteza [Composite Materials Based on Elastomer and Polymer Matrices Filled with Nanodiamonds of Detonation Synthesis]. Rossiyskie nanotekhnologii [Russian Nanotechnologies]. 2007, vol. 2, no. 7—8, pp. 19—37. (In Russian)
  9. Prokopets V.S., Galdina V.D. Bitumnye kompozitsii s dobavkoy agregatov nanochastits [Bituminous Compositions with Addition of Aggregates of Nanoparticles]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2012, no. 5 (160), pp. 16—17. (In Russian)
  10. Belin T., Epron F. Characterization Methods of Carbon Nanotubes: a Review. Materials Science and Engineering: B. 2005, vol. 119, no. 2, pp. 105—118. DOI: https://dx.doi.org/10.1016/j.mseb.2005.02.046.
  11. Lobach A.S. Razrabotka kompozitsionnykh nanomaterialov na osnove khimicheski modifitsirovannykh odnostennykh uglerodnykh nanotrubok i vodorastvorimykh polimerov s zadannymi svoystvami [The Development of Composite Nanomaterials on the Basis of Chemically Modified Single-Walled Carbon Nanotubes and Water-Soluble Polymers with the Desired Properties]. Rusnanotech’ 08 : sbornik trudov Mezhdunarodnogo foruma po nanotekhnologiyam (g. Moskva, 3—5 dekabrya 2008 g.) [Proceedings of the International Forum on Nanotechnology “Rusnanotech 08”. (Moscow, December 3—5, 2008)]. Moscow, 2008, vol. 1, pp. 479—481. (In Russian)
  12. Kovalev Ya.N. Aktivatsionno-tekhnologicheskaya mekhanika dorozhnogo asfal’tobetona [Activation-Technological Mechanics of Road Asphalt]. Minsk, Vysheyshaya shkola Publ., 1990, 180 p. (In Russian)
  13. Lukashevich V.N. Sovershenstvovanie tekhnologii asfal’tobetonnykh smesey dlya uvelicheniya sroka sluzhby dorozhnykh pokrytiy [Improving the Technology of Asphalt Mixes to Increase the Service Life of Road Coating]. Stroitel’nye materialy [Construction Materials]. 1999, no. 11, pp. 9—10. (In Russian)
  14. Lysikhina A.I. Primenenie poverkhnostno-aktivnykh i drugikh dobavok pri stroitel’stve asfal’tobetonnykh i podobnykh im dorozhnykh pokrytiy [The Use of Surfactants and Other Additives in the Asphalt and Similar Road Surfaces]. Moscow, Avtotransizdat Publ., 1957, 56 p. (In Russian)
  15. Korolev I.V. Puti ekonomii bituma v dorozhnom stroitel’stve [Ways to Save Bitumen in Road Construction]. Moscow, Transport Publ., 1986, 149 p. (In Russian)
  16. Juyal P., Garcia D.M., Andersen S.I. Effect on Molecular Interactions of Chemical Alteration of Petroleum Asphaltenes. I. Energy and Fuels. 2005, vol. 19, no. 4, pp. 1272—1281. DOI: http://dx.doi.org/10.1021/ef050012b.
  17. Chianelli R.R., Siadati M., Mehta A., Pople J., Ortega L.P., Chiang L.Y. Self-Assembly of Asphaltene Aggregates: Synchrotron, Simulation and Chemical Modeling Techniques Applied to Problems in the Structure and Reactivity of Asphaltenes. Springer Verlag, New York, 2007, pp. 375—400. DOI: http://dx.doi.org/10.1007/0-387-68903-6_15.
  18. Vysotskaya M.A., Rusina S.Yu., Kuznetsov D.A., Yazykina V.V., Spitsyna N.G., Lobach A.S. Patent 2496812 RF, MPK S08L 95/00, C08L 9/06, C08K 3/04, B82B 1/00. Polimerno-bitumnoe vyazhushchee i sposob ego polucheniya [Russian Patent 2496812 RF, MPK S08L 95/00, C08L 9/06, C08K 3/04, B82B 1/00. Polymer-Bitumen Binder and Method for Its Production]. No. 2012133131/05 ; appl. 01.08.2012 ; publ. 27.10.2013, bulletin no. 30. Patent holder FGBOU VPO “Belgorodskiy gosudarstvennyy tekhnologicheskiy universitetim. V.G. Shukhova”, pp. 1—8. (In Russian)
  19. Marina Vysotskaya, Dmitriy Kuznetsov, Svetlana Rusina. Experience and Prospects of Nanomodification Using in Production of Composites Based on Organic Binders. 5th International Conference NANOCON 2013 — Brno, Chech Repablik, EU. October 16th—18th, 2013.
  20. Vysotskaya M., Rusina S. Development of the Nanomodified Filler for Asphalt Concrete Mixes. Journal Applied Mechanic and Materials. 2015, vols. 725—726, pp. 511—516. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.725-726.511.
  21. Vysotskaya M.A., Rusina S.Yu. O perspektivakh ispol’zovaniya nanotrubok pri prigotovlenii polimer-bitumnogo vyazhushchego [On the Prospects of Using Nanotubes in the Production of Polymer-Asphalt Binder]. Dorogi i mosty [Roads and Bridges]. 2014, no. 2, pp. 171—187. (In Russian)

Download

ASSESSMENT OF MODEL UNCERTAINTY IN SHEAR RESISTANCE PROVIDED BY EN 1993-1-5 AND SNIP II-23

Vestnik MGSU 5/2013
  • Nadolski Vitaliy Valer’evich - Belarusian National Technical University (BNTU) master of sciences, assistant lecturer, Department of Metal and Timber Structures; +375 259 997 991, Belarusian National Technical University (BNTU), 65 prospekt Nezavisimosti, Minsk, 220013, Republic of Belarus; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Martynov Yuriy Semenovich - Belarusian National Technical University (BNTU) Candidate of Technical Sciences, Professor, Professor, Department of Metal and Timber Structures, Belarusian National Technical University (BNTU), 65 prospekt Nezavisimosti, Minsk, 220013, Republic of Belarus; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-20

The paper is focused on the model uncertainty related to the shear resistance of steel elements with transverse stiffeners on the basis of available test results. The paper shows the general characteristics of resistance models for shear which are used in the regulatory documents EN 1993-1-5 and SNIP II-23. Their areas of application are described. The procedure for selecting the experimental values of shear resistance is described, as well. Comparison of experimental and theoretical values of the shear resistance is performed. Statistical characteristics of the model uncertainty of the shear resistance of steel elements having transverse stiffeners are obtained. Variation of the model uncertainty using basic variables is analyzed, and significant variables are identified for the models specified in SNIP II-23. In the paper, probabilistic description of model uncertainties is analyzed. The proposed probabilistic description of the model uncertainty consists of the lognormal or normal distribution having the coefficient of variation of 0.16 and the mean value of 1.18. The author believes that further research into the models of shear resistance specified in SNiP II-23 is required with a view to their improvement. The database of experimental findings in the area of shear resistance is compiled.

DOI: 10.22227/1997-0935.2013.5.7-20

References
  1. SNiP II-23—81*. Stal’nye konstruktsii [Construction Norms and Rules II-23—81*. Steel Structures]. Moscow, 1991.
  2. EN 1993-1-5-2006. Eurocodes 3 – Design of steel structures – Part 1.5: Plated Structural Elements. Brussels, European Committee for Standardization, 2006, 53 p.
  3. Martynov Yu.S., Lagun Yu.I., Nadolski V.V. Modeli soprotivleniya sdvigu stal’nykh elementov, uchityvayushchie poteryu mestnoy ustoychivosti stenki [Shear Resistance Models of Steel Elements with Account for Web Buckling]. Metallicheskie konstruktsii [Metal Constructions]. 2012, vol. 18, no. 2, pp. 111—122.
  4. AISC-360-05. Specification for Structural Steel Buildings. American Institute of Steel Construction. Chicago, 2005, 256 pp.
  5. CSA-S16-01. Limit States Design of Steel Structures includes Update no. 1, 2010, Update no. 2, 2001. Mississauga, Ontario, Canadian Standards Association, 2009, 198 p.
  6. H?glund T. Strength of Steel and Aluminum Plate Girders: Shear Buckling and Overall Web Buckling of Plane and Trapezoidal Webs – Comparison with Tests. Tech. report no. 4. Stockholm, Royal Institute of Technology, Department of Structural Engineering, 1995.
  7. Posobie po proektirovaniyu stal’nykh konstruktsiy (k SNiP II-23—81* Stal’nye konstruktsii) [Handbook of Design of Steel Structures (based on Construction Norms and Rules II-23—81*. Steel Structures)]. Moscow, TsITP Gosstroy SSSR Publ., 1989, 148 p.
  8. Kuznetsov V.V., editor. Metallicheskie konstruktsii. T. 1. Obshchaya chast’. (Spravochnik proektirovshchika) [Metal Structures. Vol. 1. General Issues. (Designer’s Reference Book)]. Moscow, ASV Publ., 1998, 576 p.
  9. Basler K. Strength of Plate Girders in Shear. Proc. ASCE, Journal Structural Division. 1961, vol. 87(2), no. ST 7, pp. 181—197.
  10. H?glund T. Design of Thin Plate I-Girders in Shear and Bending with Special Reference to Web Buckling. Royal Institute of Technology, Department of Building Statics and Structural Engineering. Stockholm, Sweden, 1973.
  11. Johansson B., Maquoi R., Sedlacek G., M?ller C., Beg D. Commentary and worked examples to EN 1993-1-5 “Plated structural elements”. JRC Reports (Eurocodes related). Luxemburg, Office for Official Publication of the European Communities, 2007, 226 p.
  12. Ziemian R.D. Guide to Stability Design Criteria for Metal Structures. Hoboken, New Jersey, John Wiley & Sons, Inc., 2010, 1117 p.
  13. Gardner L. and Nethercot D. Designers’ Guide to EN 1993-1-1. Eurocode 3: Design of Steel Structures. General Rules and Rules for Buildings. London, Thomas Telford Ltd., 2005, 109 p.
  14. Basler K., Mueller J. A., Thurlimann B. and Yen B. T. Web Buckling Tests on Welded Plate Girders. Welding Research Council Bulletin no. 64, September 1960, reprint no. 165 (60-5). Fritz Laboratory Reports, 1960.
  15. Benjamin Braun. Stability of Steel Plates under Combined Loading. Stuttgart Univ., Diss. Inst. f. Konstruktion u. Entwurf, 2010, 226 p.
  16. Charlier R. and Maquoi R. Etude experimentale de la capacit? portante en cisaillement de poutres a ame pleine raidies longitudinalement par des profiles a section ferm?. CRIF, Bruxelles, MT 169, 1986.
  17. Cooper P.B., Lew H.S. and Yen B.T. Welded Constructional Alloy Steel Plate Girders. Journal Structural Division, ASCE, vol. 90, no. ST1, 1964, p. 36.
  18. Cooke N., Moss P.J., Walpole W.R., Langdon D.W., Mervyn H.H. Strength and Serviceability of Steel Girder Webs. Journal ASCE. 1983, no. 109, pp. 785—807.
  19. D’Apice M.A., Fielding D.J. and Cooper P.B. Static Tests on Longitudinally Stiffened Plate Girders. Welding Research Council. New York, Bulletin no. 117, 1966.
  20. Evans H.R. An Approach by Full-scale Testing of New Design Procedures for Steel Girders Subjected to Shear and Bending. Proceedings of the Institute of Civil Engineers. No. 81, 1986.
  21. Fielding D. J. and Cooper P. B. Static Shear Tests on Longitudinally Stiffened Plate Girders. 1965.
  22. Fujii T. Minimum Weight Design of Structures Based on Buckling Strength and Plastic Collapse. Japan, Institute of Shipbuilding, 1967, no.122.
  23. Fujii T. Comparison between the Theoretical Shear Strength of Plate Girders and the Experimental Results. Contribution to the prepared discussion. In IABSE Colloquium, vol. 11, IABSE, London, 1971, pp. 161—172.
  24. Hachirho T. A Fundamental Study on Simplified Analysis of Buckling, Load-carrying Capacity and Deformability of Girders. Kyoto University, 2004, 197 p.
  25. Lew H.S., Natarajan M. and Toprac A.A. Static Tests on Hybrid Plate Girders. Welding Research Council. Supplement vol. 75, part II, 1969, 86 p.
  26. Longbottom E. and Heyman J. Experimental Verification of the Strength of Plate Girders Designed in accordance with the Revised British Standard 153: Tests on Full-scale and on Model Plate Girders. Proceedings of Inst. Civ. Engrs., Part III. 1956, pp. 462—486.
  27. Lyse I. and Godfrey H.J. Investigation of Web Buckling in Steel Beams. Trans. ASCE, 100. 1935, pp. 675—695.
  28. Okumura T. and Nishino F. Failure Tests of Plate Girders using Large-Sized Models. Structural Engineering Laboratory Report, Department of Civil Engineering, University of Tokyo, 1966.
  29. Okumura T., Fujii T., Fukumoto Y., Nishino F. Failure Tests on Plate Girders. Structural Engineering Laboratory Report, Department of Civil Engineering, University of Tokyo, 1967.
  30. Nishino F. and Okumura T. Experimental Investigation of Strength of Plate Girders in Shear. IABSE, Proc. 8th Congr, Final Report, 1968, pp. 451—463.
  31. Rockey K. and Skaloud M. Influence of the Flexural Rigidity of Flanges upon the Load-carrying Capacity and Failure Mechanism in Shear. Acta Technica CSA V, 1969, 3.
  32. Rockey K. and Skaloud M. The Ultimate Behavior of Plate Girders Loaded in Shear. IABSE Colloquium, 1971, pp. 1—19.
  33. Rockey K., Vanltinat G. and Tang K.H. The Design of Transverse Stiffeners on Webs Loaded in Shear — an Ultimate Load Approach. Proceedings I.C.E., Part 2, 71, Dec. 1981, pp. l069—1099.
  34. Rockey K., Evans H. R. and Porter D. M. Test on Longitudinally Reinforced Plate Girder Subjected to Shear. Stability of Steel Structures. Liege, Preliminary Report, April, 1977.
  35. Sakai F., Doi K., Nishino F. and Okumura T. Failure Tests of Plate Girders Using Large Sized Models. Structural Engineering Laboratory Report, University of Tokyo, 1967.
  36. Sakai F., Fujii T. and Fukuchi Y. Review of Experiments on Plate Girders. TSSC, 1968, vol. 4, no. 27.
  37. Skaloud M. Ultimate Load and Failure Mechanism of Thin Webs in Shear. In IABSE Colloquium. Vol. 11, IABSE, London, 1971, pp. 115—127.
  38. Tang K.H. and Evans H.R. Transverse Stiffeners for Plate Girder Webs and Experimental Study. Journal of Constructional Steel Research. Vol. 4, 1984, pp. 253—280.
  39. Thomas H. Theory of Plasticity for Steel Structures - Solutions for Fillet Welds, Plate Girders and Thin Plates. Technical University of Denmark, Department of Civil Engineering, 2006, report no. R-146, p. 239.
  40. JCSS Probabilistic Model Code, Joint Committee of Structural Safety, 2001.

Download

Results 1 - 2 of 2