ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

NOISE EVALUATION METHOD IN A FLAT ROOM WITH EVENLY DISTRIBUTED LENSES

Vestnik MGSU 2/2014
  • Giyasov Botir Iminzhonovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Head of the Department of Architectural and Construction Design, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Matveeva Irina Vladimirovna - Tambov State Technical University (TSTU) , Tambov State Technical University (TSTU), 112E Michurinskaya str., Tambov, Russian Federation, 392032.
  • Makarov Aleksandr Mikhaylovich - Tambov State Technical University (TGTU) Candidate of Technical Sciences, Associate Professor, Department of Urban and Road Construction, Tambov State Technical University (TGTU), 112 E Michurinskaya street, Tambov, 392032, Russian Federation.

Pages 13-21

In civil and industrial buildings there are rooms, the height of which is significantly smaller than in the plan. Such spaces are flat. Distribution of the reflected sound energy depends substantially on the ratio of length to width and to height. These relations have a significant value to downturns. In flat space the reflected sound energy remains constant height along and varies only in terms of the distance from the sound source. This feature can substantially simplify the formulas for determining the density of the reflected energy. In such areas (rooms of various offices, manufacturing plants, etc.), a large number of equipment and work sources uniformly distributed in the area with approximately equal acoustic power are usually located. The equipment leads to further redistribution of the reflected energy. The technological equipment effect on the energy distribution depends on its sound absorption and sound absorption characteristics of the room. In order to assess the effectiveness of acoustic absorption it is necessary to find a method of calculating noise regime in flat areas, which will take into account the features of noise propagation there. The article presents a method for calculating noise for civil and industrial buildings, taking into account the peculiarities of noise fields in these areas and the presence of the scattering and absorbing sound equipment. The method is based on a statistical approach to the calculation of the reflected sound energy. The proposed calculation method and the computer program can solve the problem by evaluating the noise regime at all the design stages of noise control.

DOI: 10.22227/1997-0935.2014.2.13-21

References
  1. Antonov A.I., Ledenev V.I., Solomatin E.O., Gusev V.P. Metody rascheta urovney pryamogo zvuka, izluchaemogo ploskimi istochnikami shuma v gorodskoy zastroyke [Calculating Methods of Direct Sound Level Pinged by Flat Noise Sources in Urban Area]. Zhilishchnoe stroitel'stvo [House Construction]. 2013, no. 6, pp. 13—15.
  2. Antonov A.I., Ledenev V.I., Solomatin E.O. Raschety urovney pryamogo zvuka ot lineynykh istochnikov shuma, raspolagayushchikhsya na promyshlennykh predpriyatiyakh i v gorodskoy zastroyke [Direct Sound Level Calculation from Line Noise Sources Situated in Industrial Buildings and in Urban Areas]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Construction Series]. 2013, no. 31 (50), ch. 1, pp. 329—335.
  3. Ledenev V.I., Matveeva I.V., Makarov A.M. Metodika otsenki zvukopogloshchayushchikh kharakteristik tekhnologicheskogo oborudovaniya, razmeshchaemogo v proizvodstvennykh pomeshcheniyakh [Evaluation Method of Sound Absorbing Properties of Manufacturing Equipment Situated in Industrial Premises]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Tambov State Technical University]. 2004, vol. 10, no. 4—2, pp. 1103—1108.
  4. Ledenev V.I., Makarov A.M. Raschet energeticheskikh parametrov shumovykh poley v proizvodstvennykh pomeshcheniyakh slozhnoy formy s tekhnologicheskim oborudovaniem [Calculation of Noise Fields Energy Parameters in Industrial Premises of a Complicated Form with Manufacturing Equipment]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura [Scientific Proceedings of Voronezh State University of Architecture and Civil Engineering. Construction and Architecture]. 2008, no. 2, pp. 94—101.
  5. Ledenev V.I., Antonov A.I., Zhdanov A.E. Statisticheskie energeticheskie metody rascheta otrazhennykh shumovykh poley pomeshcheniy [Statistical Energy Calculation Methods of the Reflected Noise Fields in Premises]. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Tambov State Technical University]. 2003, vol. 9, no. 4, pp. 713—717.
  6. Ledenev V.I. Statisticheskie energeticheskie metody rascheta shumovykh poley pri proektirovanii proizvodstvennykh zdaniy [Statistical Energy Calculation Methods of Noise Fields in the Process of Industrial Buildings Design]. Tambov, 2000, 156 p.
  7. Antonov A.I., Ledenev V.I., Solomatin E.O. Kombinirovannyy metod rascheta shumovogo rezhima v proizvodstvennykh zdaniyakh teploelektrotsentraley [Combined Calculation Method of Noise Mode in Industrial Buildings of Thermal Stations]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura [Scientific Proceedings of Voronezh State University of Architecture and Civil Engineering. Construction and Architecture]. 2011, no. 2, pp. 16—24.
  8. Gusev V.P., Zhogoleva O.A., Ledenev V.I., Solomatin E.O. Metod otsenki rasprostraneniya shuma po vozdushnym kanalam sistem otopleniya, ventilyatsii i konditsionirovaniya [Noise Distribution Evaluation Method in Air Vents of Heating, Ventilation and Conditioning Systems]. Zhilishchnoe stroitel'stvo [House Construction]. 2012, no. 6, pp. 52—54.
  9. Ledenev V.I., Matveeva I.V., Kryshov S.I. Inzhenernaya otsenka rasprostraneniya shuma v tonnelyakh i koridorakh [Engineering Evaluation of Noise Distribution in Tunnels and Passages]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [News of Southwest State University]. 2011, no. 5 (38), ch. 2, pp. 393—396.
  10. Ledenev V.I., Voronkov A.Yu., Zhdanov A.E. Metod otsenki shumovogo rezhima kvartir [Evaluation Method of the Noise Mode of Flats]. Zhilishchnoe stroitel'stvo [House Construction]. 2004, no. 11, pp. 15—17.
  11. Ledenev V.I., Solomatin E.O., Gusev V.P. Otsenka tochnosti i granits primenimosti statisticheskikh energeticheskikh metodov pri raschetakh shuma v proizvodstvennykh pomeshcheniyakh energeticheskikh ob"ektov [Evaluation of Preciseness and Application Field of Statistical Energy Methods in the Process of Noise Calculation in Industrial Premises of Power Assets]. Academia. Arkhitektura i stroitel'stvo [Academia. Architecture and Construction]. 2010, no. 3, pp. 237—240.
  12. Kryshov S.I., Makarov A.M., Demin O.B. Prostranstvennoe zatukhanie i rasseyanie zvukovoy energii v proizvodstvennykh pomeshcheniyakh na rasseivayushchem zvuk oborudovaniya [Space Attenuation and Diffusion of Sound Energy in Industrial Premises on the Sound Diffusing Equipment]. Academia. Arkhitektura i stroitel'stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 196—199.
  13. Isimaru A. Rasprostranenie i rasseyanie voln v sluchayno-neodnorodnykh sredakh [Wave Distribution and Diffusion in Random Medium]. Moscow, Mir Publ., 1981, vol. 1, 281 p.
  14. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of Mathematical Physics]. Moscow, Nauka Publ., 1977.

Download

METHOD OF NOISE ANALYSIS INSIDE LONG PREMISES

Vestnik MGSU 1/2013
  • Antonov Aleksandr Ivanovich - Tambov State Technical University (TGTU) Candidate of Technical Sciences, Associate Professor, Department of Architecture and Construction of Buildings, Tambov State Technical University (TGTU), 112 E Michurinskaya street, Tambov, 392032, Russian Federation; +7 (4752) 63-03-82, 63-04-39; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Solomatin Evgeniy Olegovich - Tambov State Technical University (TSTU) + 7 (4752) 63-09-20; + 7 (4752) 63-03-72, Tambov State Technical University (TSTU), Building E, 112 Michurinskaya St., Tambov, 392032, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tseva Anna Viktorovna - Moscow State University of Civil Engineering (MGSU) assistant lecturer, Department of Architectural and Structural Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospekt, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 19-25

Long rooms often make substantial contributions into the noise energy distribution inside buildings. Application of methods of theoretical geometry to the analysis of sound energy distribution patterns in hallway-like premises can cause considerable errors in the implementation of noise protection actions.The method of noise analysis based on statistical principles is proposed in the article. It originates from one-dimensional quasi-diffusive representation of a sound field in long rooms. Interrelation between the stream and the density gradient of reflected sonic energy, as well as consideration of the energy balance in respect of elements of extended room make it possible to design a mathematical model of a stationary noise field in the form of a differential equation that has boundary conditions. The authors have developed a numerical model of a differential equation based on the statistical energy approach using the Zeydel method of simple iterations, and a software programme designated for the analysis of noise fields of long rooms. The Zeydel method demonstrates its high efficiency as it has proven fast convergence of results and takes up a small amount of computer memory because of the tape-like shape of matrix coefficients of the system equations. Comparison of analytical and experimental data has demonstrated high precision of calculations made for rooms that have various acoustic and spacelanning parameters. The method can be used to design sound proofing actions inside premises of civil and industrial buildings.

DOI: 10.22227/1997-0935.2013.1.19-25

References
  1. Ledenev V.I. Statisticheskie energeticheskie metody rascheta shumovykh poley pri proektirovanii proizvodstvennykh zdaniy [Statistical Energy-related Methods of the Noise Field Analysis within the Framework of Design of Industrial Buildings]. Tambov, 2000, 156 p.
  2. Ledenev V.I., Makarov A.M. Raschet energeticheskikh parametrov shumovykh poley v proizvodstvennykh pomeshcheniyakh slozhnoy formy s tekhnologicheskim oborudovaniem [Analysis of Energy Parameters of Noise Fields inside Industrial Premises That Have an Irregular Shape and Accommodate the Process Machinery]. Nauchnyy vestnik VGASU [Scientific Bulletin of Voronesh State University of Architecture and Civil Engineering]. Voronezh, 2008, no. 2 (10), pp. 102—108.
  3. Ledenev V.I., Matveeva I.V., Kryshov S.I. Inzhenernaya otsenka rasprostraneniya shuma v tonnelyakh i koridorakh [Engineering Assessment of Noise Propagation in Tunnels and Corridors]. Izvestiya Yugo-Zapadnogo gos. un-ta [Proceedings of Southwestern State University]. Kursk, 2011, no. 5 (38), chapter 2, pp. 393—396.
  4. Gusev V.P. Snizhenie shuma v gazovozdushnykh traktakh energeticheskikh ob”ektov [Noise Reduction in Gas-air Flow Ducts of Energy Generating Facilities]. Arkhitekturnaya i stroitel’naya akustika. Shumy i vibratsiy: sb. tr. XI ses. Ros. akust. ob-va. [Architectural and Civil Engineering Acoustics. Noises and Vibrations. Collected works of the 11th session of the Russian Acoustic Society]. Moscow, 2001, vol. 4, pp. 31—42.
  5. Gusev V.P., Solodova M.A. K voprosu o rasprostranenii shuma v krupnogabaritnykh gazovozdushnykh kanalakh [On the Issue of Noise Propagation inside Large-size Gas-air Ducts]. ACADEMIA. Arkhitektura i stroitel’stvo. [ACADEMY. Architecture and Construction]. 2010, no. 3, pp. 211—219.
  6. Gusev V.P., Ledenev V.I., Matveeva I.V. Metod otsenki rasprostraneniya shuma v krupnogabaritnykh gazovozdushnykh traktakh energeticheskikh ob”ektov [Method of Noise Propagation Assessment in Large-size Gas-air Ducts of Energy Generating Facilities]. ACADEMIA. Arkhitektura i stroitel’stvo. [ACADEMY. Architecture and Construction]. 2009, no. 5, pp. 104—107.
  7. Osipov G.L., Yudin E.Ya., Khyubner G.; Osipov G.L., Yudin E.Ya., editors. Snizhenie shuma v zdaniyakh i zhilykh rayonakh [Noise Reduction inside Buildings and in Residential Areas]. Moscow, Stroyizdat Publ., 1987, 558 p.
  8. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Reference Book on Mathematics for Scientists and Engineers]. Moscow, Nauka Publ., 1973, 831 p.
  9. Antonov A.I., Makarov A.M. Svidetel’stvo No 2008610070 o registratsii programmy dlya EVM. Raschet urovney shuma statsionarnogo zvukovogo polya i sredney dliny svobodnogo probega v proizvodstvennykh pomeshcheniyakh metodom proslezhivaniya zvukovykh luchey [Certificate no. 2008610070 of Software Programme Registration. Analysis of Noise Levels of a Stationary Sound Field and of the Average Free Path Length in Industrial Premises Using Method of Tracing Sound Beams]. Published on 01.09.2008 in the Russian Federation.
  10. Antonov A.I., Makarov A.M. Svidetel’stvo No 2008610131 o registratsii programmy dlya EVM. Raschet shumovogo polya v proizvodstvennykh pomeshcheniyakh s tekhnologicheskim oborudovaniem kombinirovannym geometricheskim-statisticheskim metodom [Certificate no. 2008610131 of Software Programme Registration. Noise Field Analysis in Industrial Premises That Accommodate Process Machinery Using an Integrated Method of Geometry and Statistics]. Published on 01.09.2008 in the Russian Federation.

Download

SOFTWARE ANALYSIS OF INFLUENCE OF ITEMS OF PROCESS MACHINERY PRODUCED ONTO ACOUSTIC CHARACTERISTICS OF INDUSTRIAL PREMISES

Vestnik MGSU 11/2012
  • Giyasov Botir Iminzhonovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, chair, Department of Architectural and Construction Design, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ledenev Vladimir Ivanovich - Tambov State Technical University (TSTU) Doctor of Technical Sciences, Professor, Professor, Department of Urban Design and Road Building, +7 (4752) 63-09-20, +7 (4752) 63-03-72, Tambov State Technical University (TSTU), Building E, 112 Michurinskaya st., Tambov, 392032, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Makarov Aleksandr Mikhaylovich - Tambov State Technical University (TSTU) Candidate of Technical Sciences, Senior Lecturer, Department of Urban Design and Road Building, +7 (4752) 63-09- 20, +7 (4752) 63-03-72, Tambov State Technical University (TSTU), Building E, 112 Michurinskaya st., Tambov, 392032, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 271 - 277

The authors argue that irregular geometrical patterns of industrial premises and items of the
process machinery installed in industrial premises cause redistribution of the acoustic energy and
its essential acoustic properties, including the average free path length, the reverberation time, and
the average sound absorption coefficient. Any failure to take account of the above influence causes
errors in identification of the sound pressure intensity and in assessment of efficiency of design and
acoustics-related actions aimed at noise reduction that incorporate sound-proof facing.
The authors present the results of simulation of acoustic processes in the premises that have
items of process machinery installed, and analyze their influence on the sound absorption intensity.
The software developed on the basis of the beam tracing method is designated to assess the influence
of patterns of arrangement of items of equipment onto acoustic parameters of premises. The
software comprises independent modules designated for the simulation of acoustic processes in
different premises that demonstrate different acoustic properties. The results of the research demonstrate
that the software simulation of noise processes on the basis of the method of beam tracing
is an effective tool that may be effectively applied in the analysis of noise patterns inside industrial
premises. The software may be employed to identify integrated acoustic patterns inside industrial
premises with account for the influence of dimensions of premises, characteristics of items of process
machinery capable of disseminating sounds, etc. and other factors of signifi cance in terms of
the distribution of reflected sound energy. Presently, advanced software is being developed on the
basis of the proposed method of noise assessment in the premises that have irregular geometrical
patterns.

DOI: 10.22227/1997-0935.2012.11.271 - 277

References
  1. Antonov A.I., Makarov A.M. Svidetel’stvo ¹ 2008610070 o registratsii programmy dlya EVM. Raschet urovney shuma statsionarnogo zvukovogo polya i sredney dliny svobodnogo probega v proizvodstvennykh pomeshcheniyakh metodom proslezhivaniya zvukovykh luchey [Certificate ¹ 2008610070 of Registration of a Software Programme. Analysis of Noise Produced by the Stationary Acoustic Field Using Method of Acoustic Beam Tracing]. Published on 9.01.2008.
  2. Antonov A.I., Makarov A.M. Svidetel’stvo ¹ 2008610071 o registratsii programmy dlya EVM. Raschet urovney shuma nestatsionarnogo zvukovogo polya i vremeni reverberatsii v proizvodstvennykh pomeshcheniyakh metodom proslezhivaniya zvukovykh luchey [Certificate ¹ 2008610071 of Registration of a Software Programme. Analysis of Noise Produced by the Non-stationary Acoustic Field and Analysis of Reverberation Time Inside Industrial Premises Using Method of Acoustic Beam Tracing]. Published on 9.01.2008.
  3. Schroeder M.R. Computer Models for Concert Hall Acoustics. AJP, 1973, vol. 41, no. 4, pp. 461—471.
  4. Antonov A.I., Ledenev V.I. Metodika otsenki sredney dliny svobodnogo probega zvukovykh voln v pomeshcheniyakh [Methodology of Assessment of the Average Free Path Length of Acoustic Waves inside Premises]. Tambov, Collected Works of Tambov State Technical University, 2004, no. 16, pp. 3—6.
  5. Osipov G.L., Yudin E.Ya., Khyubner G., edited by Osipov G.L. and Yudin E.Ya. Snizhenie shuma v zdaniyakh i zhilykh rayonakh [Noise Reduction inside Buildings and Residential Areas]. Moscow, Stroyizdat Publ., 1987, 558 p.
  6. Ledenev V.I., Makarov A.M. Raschet energeticheskikh parametrov shumovykh poley v proizvodstvennykh pomeshcheniyakh slozhnoy formy s tekhnologicheskim oborudovaniem [Analysis of Energy Parameters of Acoustic Fields Inside Industrial Premises That Have Irregular Geometric Patterns and That Accommodate Items of Process Machinery]. Nauchnyy vestnik VGASU [VGASU Scientific Bulletin]. 2008, no. 2 (10), pp. 94—101.
  7. Antonov A.I., Makarov A.M. Svidetel’stvo ¹ 2008610131 o registratsii programmy dlya EVM. Raschet shumovogo polya v proizvodstvennykh pomeshcheniyakh s tekhnologicheskim oborudovaniem kombinirovannym geometricheskim — statisticheskim metodom [Certificate ¹ 2008610131 of Registration of a Software Programme. Analysis of Noise Fields Inside Industrial Premises That Accommodate Process Machinery Using an Integrated Geometrical-Statistical Method]. Published on 9.01.2008.

Download

Results 1 - 3 of 3