Vestnik MGSU 6/2013
  • Rymarov Andrey Georgievich - Moscow State University of Civil Engineering (MGSU) +7 (499) 188-36-07, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Smirnov Vladimir Viktorovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Senior Lecturer, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 147-152

Evaporation of the swimming pool water into the indoor air causes penetration of the water vapour containing chlorine derivatives into the enclosure structures and corrosion of the reinforcement due to the presence of dissolved chlorine derivatives in the water. Water vapour migration through outdoor and indoor enclosures is intensive in the cold season, but it may also occur in the warm season. Bearing elements of outdoor and indoor enclosures are now made of the reinforced concrete that has fillers — Portland cement or other types of cement and steel, metal (steel) bars of different diameters. In “ideal” conditions, the concrete must stop corrosion of the steel reinforcement, but it does not happen this way in practice, as corrosion of the reinforcement is influenced by a number of factors.The concentration of chlorides that diffuse into the concrete is lower than the concentration of chlorides in the concrete, but their corrosive influence is higher because of their “non-free” condition. The authors describe the causes and results of corrosion of the steel reinforcement caused by derivatives of chlorine and boosted by the gaseous regime inside the swimming pool building. Analysis of the cases of influence of the water containing 3% of chlorine onto the corrosion of reinforced Portland cement aimed at the reduction of the reinforcement rod diameter is performed. Corrosion of bearing structures causes the loss of strength and durability of buildings, and this process is unsafe from the viewpoint of security of people.

DOI: 10.22227/1997-0935.2013.6.147-152

  1. Smirnov V.V. Issledovanie vliyaniya parametrov mikroklimata na dolgovechnost’ nesushchikh konstruktsiy pomeshcheniya basseyna [Research into the Influence of the Microclimate Parameters onto the Durability of Bearing Structures of Buildings of Swimming Pools]. Moscow, MGSU Publ., 2009.
  2. Rymarov A.G. Rymarov A.G. Prognozirovanie parametrov vozdushnogo, teplovogo, gazovogo i vlazhnostnogo rezhimov pomeshcheniy zdaniya [Projection of Air, Heat, Gas and Humidity Regimen of Building Premises]. Academia [The Academy]. 2009, no. 5, pp. 362—364.
  3. Zaikin B.B., Moskaleychik F.K. Korroziya metallov, ekspluatiruyushchikhsya vo vlazhnom vozdukhe, zagryaznennom sernistym gazom ili khlorom [Corrosion of Metals Used in the Humid Air, Polluted by the Sulfur Dioxide Gas or Chlorine]. Naturnye i uskorennye ispytaniya. Sbornik MDNTP. [Field and Accelerated Tests. Collection of Moscow House of Science and Technology Promotion]. Moscow, MDNTP im. F.E. Dzerzhinskogo publ., 1972, pp. 160—168.
  4. Tupikin E.I., Saidmuratov B.I. Korroziya i zashchita stal’noy armatury v peschanykh betonakh [Corrosion and Protection of Steel Bars in Sand Concretes]. Moscow, VNIIEgaprom publ., 1991.
  5. Ovchinnikov I.G., Ratkin V.V., Zemlyanskiy A.A. Modelirovanie povedeniya zhelezobetonnykh elementov konstruktsiy v usloviyakh vozdeystviya khlorsoderzhashchikh sred [Behaviour Modeling of Structural Elements Made of Reinforced Concrete and Exposed to Chlorine-containing Environments]. Sbornik dokladov [Collection of Reports]. Saratov, SGTU Publ., 2000, pp. 50—55.
  6. Nikiforov V.M. Tekhnologiya metallov i konstruktsionnye materialy [Technology of Metals and Structural Materials]. Moscow, Vyssh. shk. publ., 1980.
  7. Fokin K.F. Stroitel’naya teplotekhnika ograzhdayushchikh chastey zdaniy [Thermal Engineering of Enclosing Components of Buildings]. Moscow, Stroyizdat Publ., 1973, 288 p.
  8. Gagarin V.G. Teplofizicheskie problemy sovremennykh stenovykh ograzhdayushchikh konstruktsiy mnogoetazhnykh zdaniy [Thermalphysic Problems of Contemporary Wall Enclosure Structures of Buildings]. Academia [The Academy]. 2009, no. 5, pp. 297—305.
  9. Moore J.F.A. and Cox R.N. Corrosion of Metals in Swimming Pool Buildings. Report 165, 1989.


Results 1 - 1 of 1